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We use a real-space renormalization group(RSRG) to study the low-temperature dynamics of kinetically
constrained Ising chains(KCICs). We consider the cases of the Fredrickson-Andersen(FA) model, the East
model, and the partially asymmetric KCIC. We show that the RSRG allows one to obtain in a unified manner
the dynamical properties of these models near their zero-temperature critical points. These properties include
the dynamic exponent, the growth of dynamical length scales, and the behavior of the excitation density near
criticality. For the partially asymmetric chain, the RG predicts a crossover, on sufficiently large length and time
scales, from East-like to FA-like behavior. Our results agree with the known results for KCICs obtained by
other methods.
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I. INTRODUCTION

Kinetically constrained models(KCMs) [1–4] are systems
in which certain trajectories between configurations are sup-
pressed[5]. As a result, they display interesting slow dy-
namical behavior[6–10]. Simple KCMs, like the facilitated
kinetic Ising model introduced by Fredrickson and Andersen
[1] (hereafter the FA model) and Jäckle and Eisinger[3]
(hereafter the East model), display the slow, cooperative re-
laxation characteristic of supercooled liquids near the glass
transition[11,12]. For a general review of KCMs, see[13].

In this paper, we show that a simple real-space renormal-
ization group (RSRG) scheme[14] yields the dynamical
properties of facilitated spin models in one dimension, or
kinetically constrained Ising chains(KCICs), near their zero-
temperature critical point[15]. This behavior is known from
previous work[13]. The RSRG scheme provides a unified
framework for treating these systems, allowing one to obtain
critical dynamic exponents and to visualize the RG flows of
scaling variables related to temperature and spatial asymme-
try.

We proceed as follows. In Sec. II, we define KCICs, and
show, following Siggia[19], that they can be written in terms
of “interacting quantum spins.” We discuss in Sec. III how
this formalism admits a simple physical interpretation in
terms of reaction-diffusion processes. In Secs. IV–VII, we
use a RSRG scheme to extract the zero-temperature critical
behavior of KCICs, in the FA model(Sec. V) and East model
(Sec. VI) limits, and for the case of finite asymmetry[20]
(Sec. VII). We find that the dynamical exponents for the FA
and East models are, respectively,z=2 andz=sT ln 2d−1, in
agreement with existing results[13]. We show that length
scales in the FA model grow asj,e1/T near the critical point
T=0, while for the East model there is no characteristic
length scale. We also quantify the crossover of the KCIC
with large but finite asymmetry from East-like to FA-like
behavior. In Sec. VIII, we state our conclusions.

II. KCIC: A PSEUDOSPIN FORMULATION

The KCIC is defined as follows[1,3]. Consider a chain of
N Ising spinssi = ±1, in one space dimension, with Hamil-

tonian H= 1
2oisi. We will take N even, assume periodic

boundary conditions, and restrict the dynamics to flips of
single spins that have at least one nearest neighbor in the up
state. The transition rates depend on whether the facilitating
up-spin↑ lies to the left or the right of the flipping spin:

↑↑ →
bs1−cd

↓↑, ↓↑→
bc

↑↑, ↑↑ →
b̃s1−cd

↑↓, ↑↓→
b̃c

↑↑, s1d

wherebP f0,1g , b̃;1−b, andc;s1+e1/Td−1<e−1/T at low
temperature. The biasb determines the symmetry properties
of the kinetic constraint: the FA and East models correspond
to the limiting cases of symmetrysb= 1

2
d and maximal asym-

metry sb=0d, respectively. The East model is so called be-
cause information propagates to the east. We will also con-
sider the case of generalb, which we will call the biased
constrained Ising chain(BCIC). For b small but finite, the
BCIC exhibits a crossover at large length and time scales
from East-like to FA-like behavior[20]. In Sec. IV, we use
an RSRG to quantify this crossover.

The dynamics of the KCIC is governed by the master
equation

] Pss,td
] t

= − o
i

wssidPss,td + o
i

ws− sidPss8,td, s2d

wherePss ,td is the probability that the system has configu-
ration s;hs1,… ,si ,… ,sNj at time t (s8 is the configura-
tion s with spin si flipped), and wssid;w(si ,hs jj) is the
probability per unit time thatsi will flip. The hs jj are the
nearest neighbors ofi. The matrix controlling the time devel-
opment of the 2N-component vectorP is not in general Her-
mitian, but can be made so by introducing the vector
css ,td; P0ssd1/2Pss ,td. Here P0ssd is the equilibrium dis-
tribution. However, this obscures the fact that the evolution
operator is a normalized stochastic process which obeys de-
tailed balance, and so we will use the non-Hermitian repre-
sentation where this is explicit.

One passes to a quantum formalism[19] by introducing
the state vector
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uPstdl = o
hszj

Pssz,tdus1
zl ^ us2

zl ^ ¯ ^ usN
z l. s3d

The ketusi
zl is the state vector for the spin at sitei. The spins

are for convenience taken to lie along thez axis, and thus the
operator si

x flips the z component of spin i :si
xfssi

zd
= fs−si

zdsi
x. By differentiating Eq.(3) with respect to time,

and using Eq.(2) to eliminate Ṗss ,td, we get the master
equation in the guise of a Euclidean Schrödinger equation,

]

] t
uPstdl = − HuPstdl. s4d

HereH, which we will also call a “Hamiltonian,” is not in
general Hermitian.

We define the KCIC by the constrained Glauber rates

w„si,hs jj… = Ci„hs jj…
ebsi/2

2 coshsb/2d
, s5d

where the factor of 2 coshsb /2d is a convenient normaliza-

tion. The constraint isCi(hs jj)= b̃ni−1+bni+1, whereni ;
1
2s1

+si
zd. The sigma matrices at a given sitei obey si

asi
b=dab

+ ieg
absi

g. Sigma matrices at different sites commute. The ma-
trix H in Eq. (4) then reads

H = No
i

Ci„hs jj…sebsi
z/2 − e−bsi

z/2si
xd, s6d

where N−1;2 coshsb /2d. Using the Pauli representation
sx= s 0

1
1
0

d andsz= s 1
0

0
−1

d, we have

ni ;
1

2
s1 + si

zd = S1 0

0 0
D s7d

and

,i ;
ebsi

z/2 − e−bsi
z/2si

x

2 coshb/2
= S1 − c − c

c − 1 c
D . s8d

The HamiltonianH can then be written as the matrix direct
product,

H = s1 − bdo
i=1

N−1

1 ^ ¯ ^ ni−1 ^ ,i ^ 1 ^ ¯ ^ 1 + bo
i=1

N−1

1

^ ¯ ^ ,i−1 ^ ni ^ 1 ^ ¯ ^ 1 ; o
i=1

N−1

Li , s9d

where the LiouvillianLi ;1^ ¯ ^ L ^ ¯ ^ 1 is

L = s1 − bdn ^ , + b, ^ n =1
1 − c − b̃c − bc 0

b̃sc − 1d b̃c 0 0

bsc − 1d 0 bc 0

0 0 0 0
2 .

s10d

The matrix(10) describes a probability-conserving stochastic
process, thus the sum of each column is zero. When we
construct the RG scheme, we must preserve this condition.

The East and FA models correspond to the casesb=0 and
b= 1

2, respectively,

LE = n ^ , =1
1 − c − c 0 0

c − 1 c 0 0

0 0 0 0

0 0 0 0
2 s11d

and

LFA =
1

2
sn ^ , + , ^ nd =

1

21
2 − 2c − c − c 0

c − 1 c 0 0

c − 1 0 c 0

0 0 0 0
2 .

s12d

In the next section, we show briefly that the evolution
operators obtained above have a simple physical interpreta-
tion as reaction-diffusion processes.

III. INTERPRETATION VIA REACTION-DIFFUSION
PROCESSES

The interpretation of the KCIC as a reaction-diffusion
process follows by noting that the Liouville operators in the
previous section act on two-site basis states,

Pstd = SPs1d
Ps0d

D ^ SPs1d
Ps0d

D =1
Ps1,1d
Ps1,0d
Ps0,1d
Ps0,0d

2 , s13d

wherePs1d is the probability that a spin is up. We have again
suppressed time labels. The single-site basis states are nor-
malized probabilities of the formP= s r

1−r
d, wherer,1. The

vectorss 1
0

d ands 0
1

d are the eigenvectors ofsz with eigenvalue
+1 and −1, respectively.

We represent reaction-diffusion processes as follows. Let
the eigenvaluesi

z=1 represent a lattice sitei occupied by a
particleA, andsi

z=−1 represent the same lattice site with no
particle present. We denote this state byx. Then the East
model Liouvillian (11) has a clear physical interpretation: it
describes the(right) branching processA+x→A+A occur-
ring with rate c, and the(right) coagulation processA+A
→A+x occurring with rate 1−c. The FA model involves in
addition the (left) branching and coagulation processesA
+A→x+A andx+A→A+A.

Consider the following general set of reaction-diffusion
processes:
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Process Description Rate

right diffusion A+x→x+A DR

left diffusion x+A→A+x DL

right coagulation A+A→A+x gCR

left coagulation A+A→x+A gCL

pair annihilation A+A→x+x gA

right death x+A→x+x d

left death A+x→x+x d

right branching A+x→A+A rR

left branching x+A→A+A rL

pair creation x+x→A+A n

right birth x+x→x+A s

left birth x+x→A+x s

By inspection, using Eq.(13), the equation of motion for this
system reads

Ṗstd = −1
G − rR − rL − n

− gCR D̃R − DL − s

− gCL − DR D̃L − s

− gA − d − d S
2Pstd, s14d

where G;gCR+gCL+gA, D̃R;DR+rR+d , D̃L;DL+rL+d,
andS;2s+n.

IV. REAL-SPACE RENORMALIZATION GROUP IN 1+1
DIMENSIONS

We will now apply a simple real-space RG scheme to the
KCIC. This scheme was developed in the 1980s and used on
quantum spin models[21]. Recently, it was applied to the
contact process[14], a reaction-diffusion system. Other RG
approaches that have been used on reaction-diffusion sys-
tems include density matrix RG(DMRG) [16] and field-
theoretic RG techniques. DMRG is a numerical scheme
which tends to produce more precise estimates for critical
exponents than does the RSRG, but is less intuitive, in the
sense that it does not lend itself so readily to the visualization
of flows in RG space. Field theoretic RG techniques have
been successfully applied to many reaction-diffusion systems
in low dimensions[17,18]. However, we argued in Ref.[15]
that the FA model has an upper critical dimension of 4, and,
crucially, its coarse-grained action becomes difficult to ana-
lyze below d=2. Hence we shall employ a real-space RG
scheme ind=1, which provides both an intuitive and a trac-
table means of studying the critical behavior of the KCIC.

The idea is as follows. One divides the lattice into blocks
of p spins, and denotes the configuration of spins inside each
block a ashsija. We will focus on the casep=2, and discuss
larger blockings where appropriate. The evolution operator
HP then splits into an intrablock partH0 and an interblock
“interaction” V:

H = o
a

sH0;a + Va,a+1d. s15d

In the case of the East model, we can write

H0 = sn ^ ,d ^ s1 ^ 1d s16d

and

V = s1 ^ nd ^ s, ^ 1d, s17d

where the brackets indicate the grouping of spins into blocks.
All terms in the Liouvillian(9) are of the form(16) or (17),
with the necessary number of identity matrices affixed at
each end of the chain.

We will denote the eigenstates ofH0;a as unl and knu,
noting that the left and right eigenstates of a non-Hermitian
matrix are in general different. The East and FA models
have, respectively, triply and doubly degenerate ground
states, i.e., respectively, three and two eigenvectors with ei-
genvalue zero. One identifies these ground states as effective
cell states, and projects the basis of two-site spinsusl
P hu↑ ↑ l , u↑ ↓ l , u↓ ↑ l , u↓ ↓ lj into renormalized block spins
us8lP hu+l , u−lj. This is done by defining a projection
operator

T̂1ss8,sd ; o
n,n8

cn,n8un8lknu, s18d

whereun8l is a linear combination of the renormalized basis
vectors us8l, and thecn,n8 are real numbers. If the original
HamiltonianH is 2N-dimensional, thenT1 is a 2N/232N ma-
trix whose rows contain linear combinations of the left
ground states ofH0. One can therefore write the matrix rep-

resentation ofT̂1 as

T1 = Scu↑↑l,u+l cu↑↓l,u+l cu↓↑l,u+l cu↓↓l,u+l

cu↑↑l,u−l cu↑↓l,u−l cu↓↑l,u−l cu↓↓l,u−l
D^N/2

, s19d

where cu↑↑l,u+l is the projection of the two-spin stateu↑ ↑ l
onto the renormalized cell stateu+l, etc. The projection op-
eration is a mapping from a Hilbert space ofN spins, with
dimension 2N, to a Hilbert space ofN/2 block spins, with

dimension 2N/2. Thus T̂1:CN°CN/2. We also define the em-
bedding operator

T̂2ss,s8d ; o
n8,n

cn8,nunlkn8u, s20d

which may be cast as a 2N32N/2 matrix whose columns are
linear combinations of the right ground states ofH0. We
have

T2 =1
cu+l,u↑↑l cu−l,u↑↑l

cu+l,u↑↓l cu−l,u↑↓l

cu+l,u↓↑l cu−l,u↓↑l

cu+l,u↓↓l cu−l,u↓↓l

2
^N/2

, s21d

where nowcu+l,u↑↑l is the component of the renormalized cell
stateu+l that is embedded in the two-spin stateu↑ ↑ l. Thus

T̂2:CN/2°CN. We demand that if we apply the embedding
operator followed by the projection operator, we recover the
identity on the N/2-dimensional block-spin space:T1T2
=1N/2. But since the projection operation does not retain all
the degrees of freedom of the system, projection followed by
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embedding does not yield the identity on real-spin space.
ThusT2T1Þ1N.

The renormalization prescription is then

H8ss8d = T1ss8,sdHssdT2ss,s8d, s22d

where H8 is a renormalized evolution operator. This pre-
scription projects the original 2N32N Hamiltonian onto a
2N/232N/2 subspace. If this subspace is suitably chosen, the
renormalized HamiltonianH8 will have the same form asH,
but with renormalized couplingsl8= fsld and ratesG8=pzG.
From these relations, one can determine fixed points and
critical exponents.

We will now apply this scheme to the KCICs.

V. RENORMALIZATION OF THE FA MODEL

The FA model is defined by Eq.(12). When the blocking
parameterp=2, we need only consider the 16316 matrix

HFA = sn ^ ,d ^ s1 ^ 1d + s1 ^ nd ^ s, ^ 1d

+ s, ^ nd ^ s1 ^ 1d + s1 ^ ,d ^ sn ^ 1d. s23d

The brackets indicate the groupings of cells into blocks. The
first and third terms in Eq.(23) comprise the intracell Hamil-
tonianH0; the second and fourth terms are the intercell in-
teractionVa,a+1.

We must calculate the left and right ground states of the
matrix H0 (12). There are two left ground-state eigenvectors,
(0,0,0,1) and (1,1,1,0), and two right ground-state eigenvec-
tors,s0,0,0,1dT andsc/ s1−cd ,1 ,1 ,0dT. We will use these to
build T1 andT2, subject to the following constraints.

(i) The RG transformation must preserve probability con-
servation. Thus each column ofsHFAd8 must add up to zero.

(ii ) We require thatVa,a+18 have the same form asH0, so
that we can identify unambiguously the renormalized param-
eters. Note that by buildingT2 from the ground states ofH0,
we ensure that the renormalized intracell Hamiltonian van-
ishes, i.e.,H08=0.

(iii ) We must respect the fact that the FA model istrivi-
ally irreducible for all TÞ0 [13]. This means that any con-
figuration(bar that with all spins down) can be reached from
an initial high-temperature configuration. This suggests that
any two-spin state with at least one up-spin, namely,
u↑ ↑ l , u↑ ↓ l, and u↓ ↑ l, should be projected ontou+l.

(iv) Normalization. We require thatT1T2=s1 0

0 1 d.
One choice satisfying these criteria is

T1 = S1 1 1 0

0 0 0 1
D, T2 =

1

2 − c1
c 0

1 − c 0

1 − c 0

0 2 − c
2 . s24d

The matrixT1 projectsu↑ ↑ l , u↑ ↓ l, and u↓ ↑ l onto u+l, and
u↓ ↓ l onto u−l. T2 embeds the stateu+l as s2−cd−1hcu↑ ↑ l
+s1−cdu↑ ↓ l+s1−cdu↓ ↑ lj, andu−l as u↓ ↓ l. The form of the
ground-state vectors for the FA model stipulates that the
statesu↑ ↓ l and u↓ ↑ l are treated on equal footing during the

projection and embedding operations, as befits a model
whose dynamical rules are isotropic. We will see in the next
section that this is not so for the East model.

Using Eqs.(12) and (24), we find

sHFAd8 =
1

2s2 − cd1
2

s1 − cd2

2 − c
− c − c 0

−
s1 − cd2

2 − c
c 0 0

−
s1 − cd2

2 − c
0 c 0

0 0 0 0

2 . s25d

We can deduce the flow of the temperature parameter as
follows. Let the ratio of the sum of the rates of the processes
Ax→AA and xA→AA to the sum of the rates ofAA
→xA and AA→Ax be l. Thus its unrenormalized or
“bare” value is

l0 ; −
s1,2d + s1,3d

s1,1d
=

c

1 − c
= e−1/T, s26d

wheresi , jd is elementsi , jd of matrix (12). Hencel→0 as
T→0. We can work out howl renormalizes by calculating a
similar ratio using the matrix(25). The resulting RG recur-
sion relation is

l8 = ls2 + ld, s27d

wherel8 is the renormalized counterpart ofl. Equation(27)
describes the flow ofl away from an unstable zero-
temperature critical pointl!=0, towards a stable high-
temperature fixed pointl!→`. The unphysical fixed point
l!=−1 is inaccessible. Figure 1 shows this flow.

The RG procedure for the FA model using larger block
sizes is unambiguous, because one obtains at each stage only
two right and two left ground-state eigenvectors of the in-
trablock Hamiltonian. Thus forp=3 we construct the follow-
ing projection and embedding operators:

T1
s3d = S1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 1
D s28d

and

FIG. 1. FA model RG flow diagram for the temperature param-
eter c=s1+e1/Td−1. The zero-temperature and high-temperature
fixed points,c!=0sl!=0d andsc!=1dsla

!=`d, are, respectively, un-
stable and stable. The fixed pointc!=−`sl!=−1d is unphysical,
and inaccessible.
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T2
s3d = Nsld1

l2 0

l 0

l 0

1 0

l 0

1 0

1 0

0 Nsld−1

2 , s29d

whereNsld;s3+3l+l2d−1. In T2
s3d, one inserts in the rel-

evant slot one power ofl for every up-spin in excess of one,
in order to reflect the thermal suppression of these states.
Thus the stateu↑ ↑ ↑ l [corresponding to element(1,1) of Eq.
(29)] is penalized by a factorl2, whereas the stateu↓ ↑ ↑ l
[corresponding to element(5,1) of Eq. (29)] receives a pen-
alty of one power ofl. The generalization to larger block
sizes is straightforward. We find that for general block sizep,
the RG recursion relation is

lk = s1 + lk−1dp − 1, s30d

wherelk is the value ofl following the kth iteration of the
RG. As expected(and required by the semigroup property of
the renormalization group), we see from Eqs.(27) and (30)
that two successive coarse grainings using a block size of
p=2 are equivalent to one coarse graining using a block size
of p=4. Thusl8=pl+Osl2d near the critical pointl!=0.

The divergence of the dynamical correlation length fol-
lows from standard RG arguments[22,23]. Because the di-
mensionful correlation length must remain invariant under
the RG transformation, the dimensionless correlation length
j, measured in terms of the lattice spacing, must decrease by
a factor of the blocking parameter,p:j8=p−1j (see Fig. 2).
We can write this relation as

jsl8d = p−1jsld. s31d

In Eq. (31), l8 is the renormalized version ofl. If we can
write the RG equation forl near criticality in the forml8
=pyl+Osl2d, then the correlation length is a function satis-
fying jspyld=p−1jsld. Hencejsld~l−n', wheren';1/y.
From Eq.(30), we see thatn'=1, and hence near the critical
point

jsl0d ,
1

l0
= e1/T. s32d

This correlation length corresponds to the characteristic
spatial extent of structures(“bubbles”) in space-time trajec-
tories of the FA model at low temperature. We show one such
trajectory in Fig. 3.

We can obtain the dynamical exponentz by noting that in
the limit of zero temperature the nonvanishing elements of
Eq. (25) are one-quarter those of Eq.(12). We find that for
generalp the corresponding rescaling factor isp−2. We inter-
pret this factor as a rescaling of time under renormalization,
defining the dynamical exponentz via t8=p−zt. Thus for the
FA modelz=2, signifying diffusive behavior. This is as ex-
pected: the low-temperature dynamics of the FA model is
known to proceed by diffusion of isolated defects[13].

We can infer the consequent relaxation time of the FA
model by using the relationship between time and length
scales,t, lz, wherel is the length scale being probed. Since
the equilibrium length in the FA model scales as
leq,c−1—see below, and Refs.[11,13] and since the micro-
scopic time scale goes asc, we expect the equilibration time
to have the leading-order temperature dependencecteq
,c−2⇒teq,exps3/Td. This scaling is known from previous
work on the FA model[13].

One may also calculate[14] the density of excitated sites,
n= 1

2s1+sd, both in the steady state and near the critical fixed
point. The former is trivial for the FA model, since it obeys
detailed balance, and one may therefore consider the calcu-
lation of the steady-state density a test of the RG scheme.

First note that the renormalization of the number operator
does not depend on whethern sits in the left or right slot of
the block: s1^ nd8=sn^ 1d8=s2−cd−1na, for a block sizep
=2. The RG recursion relation for the density then reads

FIG. 2. An illustration of how length scales change under the
RG blocking procedure. Say the system admits a dimensionful cor-
relation lengthjD. Then in the unrenormalized system(left panel)
we may construct its dimensionless counterpart, measured in terms
of the lattice spacinga:j=jD /a. In the renormalized system(right
panel), the new lattice parameter isa8=pa. Thus the renormalized
dimensionless correlation length isj8=jD /a8=p−1j.

FIG. 3. Equilibrium space-time trajectories atT=1.0 for thes1
+1d-dimensional FA(left) and East(right) models, reproduced from
[11]. Up-spins are black, down spins white. Space runs along the
vertical direction, encompassing 105 spins. Time runs along the
horizontal. The characteristic length scales of both systems corre-
spond to the vertical extent of the “bubbles” of down-spins, which
scale in equilibrium asleq,c−1. The horizontal extent,t, of the
bubbles is determined by the relationt, lz, where the dynamical
exponents for the FA and East models arez=2 andz~1/T, respec-
tively. As one observes the trajectories shown above on smaller
length and shorter time scales, one moves from right to left along
the RG flow diagrams shown in Figs. 1 and 4. Hence one eventually
probes behavior controlled by the critical fixed point. For the East
model, the disappearance of the characteristic length is consistent
with the emergence of the fractal structure of the bubble boundaries.
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nk = S1 + lk

2 + lk
Dnk+1, s33d

where the subscriptk denotes the parameter obtained follow-
ing k iterations of the RG.

To extract the steady-state density, we follow[14] and
write nslkd=aslkdnslk+1d, whereasxd=s1+xd / s2+xd. By it-
erating this equation along the RG flow, we get

nssl0d = Fp
i=0

`

aslidGnsla
!d, s34d

wherens is the steady-state density andnsla
!d is the density

at the attractive fixed pointla
!=`. Again following [14], we

defineGnsld;pi=0
n aslid. From Eqs.(27) and (33), and the

definition of asld, we can write

aslkd =
1

2

d ln lk+1

d ln lk
. s35d

We can therefore writeGnsld as

Gnsld =
1

2n+1

d ln ln+1

d ln l0
. s36d

From Eq.(27), we have thatln+1=s1+l0d2n+1
−1. Using this

result with Eqs.(34) and (36), we get

nssl0d = lim
n→`

l0

l0 + 1
S1 +

1

ln+1
Dnsla

!d. s37d

As n→` , ln+1→`, and so, noting thatnsla
!d=1, we obtain

the steady-state density

nssl0d =
l0

l0 + 1
= c. s38d

This is as expected: detailed balance with respect to the
Hamiltonian Hssd= 1

2o js j implies knileq=ohsjfs1
+sid /2ge−bHssd /ohsje

−bHssd=c.
Near criticality, we can writensld=p−1nspld, and so

nsl0d,l0. Thus the density vanishes close to criticality as
n,cb with b=1.

VI. RENORMALIZATION OF THE EAST MODEL

The East model is defined by Eq.(11). To renormalize it
using a blocking parameterp=2, for example, we need only
consider the 16316 matrix

HE = sn ^ ,d ^ s1 ^ 1d + s1 ^ nd ^ s, ^ 1d. s39d

The brackets indicate the groupings of cells into blocks. The
first term in Eq.(39) is the intracell componentH0; the sec-
ond is the intercell interactionVa,a+1.

We must calculate the left and right ground states of the
matrix H0 (11). The left ground states are represented by the
row vectors (0,0,0,1), (0,0,1,0), and (1,1,0,0). The right
ground states correspond to the column vectors
s0,0,0,1dT, s0,0,1,0dT, and fc/ s1−cd ,1 ,0 ,0gT. Next, we
choose the projection and embedding matrices, which we

call R1 andR2 so as not to confuse them with their FA model
counterparts. One choice satisfying criteria(i)–(iv) (see
above) is

R1 = S1 1 1 0

0 0 0 1
D, R2 =1

ac 0

as1 − cd 0

1 − a 0

0 1
2 , s40d

where 0,a,1 parametrizes a degree of freedom. This
arises because the East model admits one more ground-state
vector than the FA model.R1 projectsu↑ ↑ l , u↑ ↓ l, andu↓ ↑ l
onto u+l, and u↓ ↓ l onto u−l. R2 embeds the stateu+l as
acu↑ ↑ l+as1−cdu↑ ↓ l+s1−adu↓ ↑ l, and u−l as u↓ ↓ l. With
this choice, we get

sHEd8 = s1 + ac− ad1
as1 − cd2 − c 0 0

− as1 − cd2 c 0 0

0 0 0 0

0 0 0 0
2 . s41d

We deduce the flow of the temperature parameter in a similar
way to before: let the ratio of the rates of the processes
Ax→AA andAA→Ax be l. Then

l0 ; −
s1,2d
s1,1d

=
c

1 − c
= e−1/T, s42d

where si , jd is elementsi , jd of matrix (11). Hence the bare
temperature parameter has the same interpretation as in the
FA model. We can work out howl renormalizes by calcu-
lating the ratio of elements(1,2) and (1,1) of matrix (41).
The resulting RG recursion relation is

l8 = a−1ls1 + ld, s43d

implying an unstable zero-temperature critical point,l!=0,
as expected.

The dynamical exponentz follows immediately. In the
critical limit l→0, element(1,1) of matrix (11) becomes
unity. Hence we may interpret the renormalized value of this
element as the time rescaling factor 2−z. From Eq.(41), we
get

2−z = lim
c→0

h1 + asc − 1dja, s44d

and soz depends on the value we choose fora.
Let us choosea. This parameter measures the extent to

which we treat the statesu↓ ↑ l andu↑ ↓ l on equal footing. In
a model with symmetric dynamical rules, such as the FA
model, we must treat these states identically. But the East
model has asymmetric dynamical rules, suggesting that at
some point in our calculation we must suppressu↓ ↑ l relative
to u↑ ↓ l, or vice versa. At which point should we do this? We
note that theprojectionmatrix R1 treatsu↑ ↓ l andu↓ ↑ l iden-
tically. If this were not the case, and we instead(for ex-
ample) used
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R18 = S1 1 0 0

0 0 1 1
D , s45d

we would violate criteria(ii ) and (iii ) above.(R18 imposes a
symmetry between flipping spins↑↔↓ in a two-spin block
and flipping the resulting renormalized spinu+l↔ u−l.)
Therefore, we conclude that theembeddingmatrix T2 must
treat u↑ ↓ l and u↓ ↑ l asymmetrically. The simplest way of
doing this is to seta=1, thus suppressing completely the
stateu↓ ↑ l. This corresponds to the assertion that a spin con-
figuration u↓ ↑ l (which is unable to change state unless con-
nected to neighboring spins) is much less important to the
dynamics than a configurationu↑ ↓ l, which is mobile. Thus
when one renormalizes the lattice usingR1 and R2 with a
=1, one effectively discards dynamical pathways mediated
by blocks of “jammed” spinsu↓ ↑ l. The RG process discards
inaccessible pathways in trajectory spacehst1

,st2
,…j, ac-

cording to rules imposed by the Liouvillian of the dynamical
process. Loosely, the projection matrixR1 identifies those
single-spin states which are facilitating, whereasR2 picks out
those two-spin states which are(internally) mobile.

Settinga=1 immediately yields a temperature-dependent
dynamic exponent: from Eq.(44) we obtain 2−z=c or z
=sT ln 2d−1. Werea,1, z would be independent of tempera-
ture to leading order. We thus conclude that maximal spatial
anisotropy in the embedding process is a necessary condition
for a temperature-dependent dynamic exponent.

The RG scheme for the East model can be generalized to
larger block sizes. However, this procedure is less straight-
forward than for the FA model, because of the freedom one is
afforded by the East model’s many ground-state eigenvec-
tors. Furthermore, the results one obtains depend on whether
one coarse-grains using a blocking parameterp equal to a
power of 2 or not.

Let us first illustrate the generalization of the procedure
for the casep=4=22. We show that the results are consistent
with the p=2 scheme. We then argue that one should obtain
a different dynamical exponent if one coarse-grains the sys-
tem using a block size not equal to a power of 2, and then
show explicitly forp=3 that this is indeed the case.

Considerp=2n, where n is an integer. BuildingR1
spd is

straightforward: it is identical toT1
spd, its FA model counter-

part. ThusR1
s4d is a 2316 matrix whose top row is composed

of 1s apart from the rightmost element, which is zero. The
opposite is true for the bottom row.

The form of the embedding matrix is less obvious, be-
cause the number of ground states increases as one increases
the block size. However, we are guided by the form of the
Liouvillian, which for block sizep=4 may be written sche-
matically as

HE = sn ^ , ^ 1 ^ 1d + s1 ^ 1 ^ n ^ ,d + s1 ^ n ^ , ^ 1d

+ s, ^ 1 ^ 1 ^ 1d + s1 ^ 1 ^ 1 ^ nd. s46d

Brackets again denote the grouping of cells into blocks. We
take the first line of Eq.(46) as the intracell HamiltonianH0.
The second line vanishes under renormalization as a conse-
quence ofT1 acting on it from the left, and so we ignore it.

The third line comprises the intercell interaction whose
renormalization properties we wish to study.

Guided by the form ofR2
s2d, we find that one choice ofR2

s4d

satisfying criteria(i)–(iv) above is

R2
s4d = Ns4dsld







l3 0

l2 0

0 0

l 0

l2 0

l 0

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 Ns4dsld−1






, s47d

whereNs4d=s1+2l+2l2+l3d−1. We see that Eq.(47) can be
obtained from its FA model counterpart by using a simple
rule-of-thumb: suppress all states of the formu↓¯ l [corre-
sponding to elements(9,1)-(18,1) of Eq. (47)], as well as
states possessing a “frozen” up-spin at the right-hand bound-
ary of the block. Thus statesu↑ ↑ ↓ ↑ l [corresponding to ele-
ment (3,1) of Eq. (47)] and u↑ ↓ ↓ ↑ l [element(7,1)] have
been removed. We see again that the embedding operator
plays the role of a dynamical “filter,” eliminating those states
which play a subdominant role in the dynamics of the East
model.

With these choices of embedding and projection opera-
tors, we obtain the RG recursion relation for the temperature,

ls4d8 = ls1 + 2l + 2l2 + l3d, s48d

and a relation for the dynamical exponent,

4−z = lim
l→0

l2s1 + ld
s1 + l + l2d2 . s49d

Equation(48) is identical to the result one would obtain via
two coarse-grainings using a block sizep=2 [Eq. (43)], as
required. Equation(49) yields the dynamical exponentz
=sT ln 2d−1, as before.

We shall demonstrate how one can generalize this ap-
proach to arbitrarily largen. Let us use reaction-diffusion
notations↑→1,↓ →0d, and write the projection and embed-
ding operators in the form

R̂1 =ku + lSo
1!

k1 !luD + u− lk00¯ 0u s50d

and
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R̂2 = So
1!

a1!u1 ! lDk+ u + u00¯ 0lk− u. s51d

The symbol 1! denotes any stateu1¯ l startingwith a 1, and
theha1!j are a set of coefficients[see, e.g., the first column of

Eq. (47)]; the projection operatorR̂1 allows one to compare
this notation to the matrix representations employed previ-

ously. The normalization requirementR̂1·R̂2=1 implies
o1!a1!=1. Thus at least one of the coefficientsa must be of
Os1d.

The values of these coefficients are fixed by the eigenvec-
tors of the intrablock evolution operator, as we have dis-
cussed. We can see how these coefficients determine the
properties of the model under renormalization, as follows.

We find that “bulk” states of the forms¯1^ n̂^ ,̂ ^ 1¯ d
vanish under renormalization as a consequence of the projec-
tion operator acting from the left. We are therefore left with

the “surface” termss,̂ ^ 1^ ¯ ^ 1d and s1^ ¯ ^ n̂d, in

which the operatorsn̂ and ,̂ sit at the edge of the block. We
find that, under renormalization,

R̂1 · s1 ^ ¯ ^ n̂d · R̂2 → So
1!1

a1!1Dn̂8 s52d

and

R̂1 · s,̂ ^ 1 ^ ¯ ^ 1d · R̂2 → sa10̄ 0d,̂8Fl → l

a10̄ 0
G .

s53d

In Eqs.(52) and(53), primes denote renormalized operators.
The symbol 1!1 denotes statesu1¯1l startingand ending
with a 1. In Eq.(53), the temperature parameterl has been
rescaled by the coefficienta10̄ 0 which weights thermally
the stateu10¯0l with a single 1 at the leftmost edge, fol-
lowed by a string of 0s. From the previous discussion, we
know that this coefficient is of order unity, and hence the
recursion relation forl will be marginal, as we have found.

The dynamical exponent follows by noting that the prod-
uct of Eqs.(52) and(53) constitutes the renormalized evolu-
tion operator, and so the prefactor describes the rescaling of
time as a consequence of rescaling space. Thus

p−z ~ lim
l→0

sa10̄ 0d 3 So
1!1

a1!1D . s54d

The constant of proportionality in Eq.(54) is s1−cd−1=1
+l, i.e., the reciprocal of element(1,1) in the unrenormal-
ized East model Hamiltonian(11). The first factor on the
right-hand side of Eq.(54) is of order unity. The second
factor is fixed by the embedding operator, which is in turn
determined by the relevant East model eigenvectors. The
rule-of-thumb we obtained above tells us that we remove
from this factor any state with a frozen rightmost up-spin.
This may be regarded as an entropic suppression of states
playing only a subdominant role in the dynamics. Those
states starting and ending with a 1 whichare important for
the dynamics of the East model are for block sizesp=2, 4, 8,
and 16,

11sld, 1011sl2d, 10001011sl3d,

1000000010001011sl4d. s55d

All have a “mobile” rightmost up-spin. The thermal weight-
ing of each state is given in brackets. These states are impor-
tant because of the hierarchical dynamics of the East model
[7,13], which dictates that two defects separated by a dis-
tanced are relaxed by establishing a set of isolated defects
between them, at distancesd/2 , 3d/4, etc. Thus for block
sizep=4, the dominant dynamical pathway proceeds via the
state 1011, with a thermal weighting ofl2 (and not, for ex-
ample, 1001, which has a weighting ofl). Hence a1011
,l2, a1001=0, and so liml→0o1!1a1!1,l2. Consequently,
the rescaling factor is 4−z,l2, and the dynamical exponent
z=sT ln 2d−1, as required.(In the FA model, states such as
u0001l are permitted, leading to temperature-independenta
coefficients and hence to a temperature-independentz.) Thus
R2, which attempts to reconstitute an unrenormalized state
from a coarse-grained state, captures both energetic effects
(the powers ofl weighting thermally the various states) and
entropic effects(the “zero” entries corresponding to those
suppressed entropically). We conclude that the RG scheme
for the East model generalizes readily to larger block sizes.

It is interesting to note that if one uses blocks of size not
equal to a power of 2, one obtains a slightly different result
for the dynamical exponent. We argue that this is a conse-
quence of the hierarchical dynamics of the East model taking
place naturally in blocks of lengths equal to a power of 2
[7,13]. We can derive the approximate value ofz that one
should obtain from a coarse-graining over block sizesp
Þ2n. Let us takep=3 as an illustration. Consider the coarse-

grained relaxation processu+ +l→
g8

u+−l. We wish to deter-
mine the leading-order temperature dependence ofg8, noting
that the rate for the equivalent unrenormalized process;

u↑ ↑ l→
g0

u↑ ↓ l, is g0=Os1d. From our previous discussion of
the form of the embedding matrices, we can infer that the
dominant dynamical pathway(involving “unrenormalized”
spins) contributing to this renormalized process is

u↑ ↓ ↓ ↑ ↓ ↓ l→
g1

u↑ ↓ ↓ ↓ ↓ ↓ l. To relax the second up-spin, one
must create two extra up-spins to the right of the first up-
spin. Hence this pathway has a rateg1,c2, and the renor-
malized rateg8=Osc2d. Other pathways also contribute to

the renormalized processu+ +l→
g8

u+−l, but do so either with
rates,c2 (e.g., u↑ ↑ ↓ ↑ ↓ ↓ l→ u↑ ↓ ↓ ↓ ↓ ↓ l)—in which case
g8 is changed only by a temperature-independent numerical
factor—or with rates higher order inc (e.g., the pathway
u↑ ↑ ↑ ↑ ↓ ↑ l→ u↑ ↓ ↑ ↓ ↓ ↓ l). These we may ignore. Since we
interpret the overall rescaling of the fundamental relaxation
rate deriving from a coarse-graining of space as the numeri-
cal factor p−z, we would therefore expect forp=3 that 3−z

,c2 or z,2/sT ln 3d.
Loosely, then, we expect that by coarse-graining space in

blocks of size 2n−1,p,2n, one should obtain z
<n/ sT ln pd [which tends toz→ sT ln 2d−1 when p→`].
Coarse-graining using block sizesp=2n yields z=sT ln 2d−1.
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This is as we expect: the energetic barriers for relaxing
chains of lengths 2n−1,p,2n and p=2n are identical, but
the entropic barriers are larger for the latter case. Thus one
would expect the dynamical exponents to differ. More so-
phisticated arguments[24] reveal that z is bounded by
sT ln 2d−1 and s2T ln 2d−1.

We can show that our guess for the dynamical exponent is
borne out in the casep=3 by the RG scheme. We construct
the embedding operator according to the

R2
s3d = Ns3dsld1

l2 0

l 0

0 0

1 0

0 0

0 0

0 0

0 Ns3dsld−1

2 , s56d

whereNs3d=s1+l+l2d−1. Together with the obvious choice
for the projection operator, we find

3−z = lim
l→0

l2

s1 + l + l2d2 , s57d

yielding z=2/sT ln 3d, as advertised. We conclude that the
RG scheme for the East model can be generalized to larger
block sizes, but more naturally so for the case of a blocking
parameterp equal to a power of 2. For simplicity, we shall
focus on the casep=2.

With a=1, the RG recursion relation(43) may be iterated
to give

lp = l0 + nl0
2 + Osl3d, s58d

wherelp is the value of the temperature parameter following
a coarse-graining of the system by a factorp=2n. Since the
bare value ofl0.0, we see that Eq.(58) describes a system
with an unstable zero-temperature critical pointl!=0 and a
stable high-temperature fixed pointl!→`. Now, however,
the temperature parameterl is marginally relevant near the
fixed pointl!=0. The RG flow diagram is shown in Fig. 4.

To determine the correlation length in the East model, we
proceed as follows. From the recursion relation(58), we see
that the correlation length satisfies

jSx +
ln p

ln 2
x2D = p−1jsxd. s59d

For small values ofx=l, corresponding to low temperatures,
we have no solutionjsld of Eq. (59) to first order inl. Thus
near criticality the East model possesses no characteristic
length scale. This is consistent with the nature of the space-
time trajectories seen in numerical simulations, such as that
shown in the right panel of Fig. 3. These display a fractal
structure[11], and hence possess no characteristic length.

On sufficiently large length and time scales, the system
will reach equilibrium, at which point the heights of bubbles
will be determined by the equilibrium spin distribution. This
doeshave a characteristic length. One therefore expects to

see, sufficiently far from criticality, the emergence of a
length scale. Below, we show that Eq.(59) indeed admits a
growing length in such a regime. This corresponds to the
eventual “blurring out” of the fractal boundaries of clusters
as one observes the system on progressively larger scales.
The emerging length scale corresponds to the spatial extent
of bubble regions.

We can quantify the emergence of this length by consid-
ering an infinitesimal RG transformation. The blocking pa-
rameterp is necessarily an integer, because our model is
defined on a lattice. But we can generalizep by considering
an infinitesimal change of scale according top=1+,, where
,!1. By writing jsl+,l2/ ln 2d<jsld+,djsld /d, and l8
−l<,dl /d,, we obtain the flow equations for the tempera-
ture and correlation length,

dls,d
d,

= ls,d2/ln 2 s60d

and

djs,d
d,

= − js,d. s61d

The initial data for Eqs.(60) and (61) are ls,0d=l0 and
js,0d=j0, respectively, where the subscript zero denotes an
unrenormalized(physically meaningful) quantity. The pa-
rameter,0 acts as a short-distance regulator(or ultraviolet
cutoff), and should be taken to zero at the end of the calcu-
lation.

One now iterates the RG by integrating Eq.(60) until
ls,d=Os1d, yielding ,−,0< ln 2/l0. From Eq.(61) we ob-
tain js,d=j0e

−s,−,0d, and so the correlation length varies with
temperature according to

j0sl0d , expf1/sl0 ln 2dg , expse1/T/ln 2d. s62d

Away from the critical pointl!=0, we therefore see an ex-
tremely rapid growth of the dynamical length scale with tem-
perature.

This length scale corresponds to the emergence of a char-
acteristic lengthjd away from criticality, and not to an equi-
librium length scaleleq. The latter may be defined as the

FIG. 4. East model RG flow diagram for the temperature
paramterc=s1+e1/Td−1. The zero-temperature critical fixed point
c!=0sl!=0d is unstable. Near this fixed point, corresponding to
observations of the system on small length and time scales, the East
model admits no characteristic length. This is consistent with the
fractal structure of space-time trajectories seen in numerical simu-
lations, such as those shown in Fig. 3. The dynamical exponentz is
proportional to 1/T, indicating a rapid slowing-down of the dynam-
ics near the critical point. As one observes the system on progres-
sively larger length and time scales, one sees the emergence of a
characteristic length growing as the double exponential of recipro-
cal temperature. This length saturates rapidly, and is eventually sup-
planted as the characteristic length of the system by the equilibrium
domain size, whose properties are controlled by the high-
temperature stable fixed pointc!=1 sl!=`d.
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reciprocal of the particle density in the steady state(see be-
low), and scales asc−1. The dynamical length is a nonequi-
librium critical quantity, and will be cut off rapidly as one
probes larger length and time scales. Thus, in terms of the
RG flow diagram, Fig. 4, the steady-state behavior is ob-
tained near the attractive fixed pointl!→`, where one
probes length and time scales much larger than those on
which critical fluctuations are manifest. The critical behavior
will be observed on short length and time scales, near the
critical fixed pointl!=0.

The characteristic equilibration time follows from the re-
lation t, lz, where l is a typical length scale. We havez
=sT ln 2d−1. Taking the equilibrium domain lengthleq,l−1,
we find the equilibration time scaleteq,c−z,lln l

=exph1/sT2 ln 2dj. This agrees with results obtained by other
means[13]. We assume that the dynamical exponentz ob-
tained near criticality holds in the region of the attractive
fixed point.

One may also calculate[14] the density of particles,n
= 1

2s1+sd. First note that the number operator renormalizes
differently depending on whethern sits in the left or right
slot of the block:sn^ 1d8=na, versuss1^ nd8=cna. Hence
we will define our density operator asn= 1

2sn^ 1+1^ nd.
The RG recursion relation for the density then reads

nk =
1

2
S1 + 2lk

1 + lk
Dnk+1. s63d

To extract the steady-state density, we write Eq.(63) as
nslkd=aslkdnslk+1d, whereasxd=s1+2xd / f2s1+xdg. By iter-
ating this equation along the RG flow, we get

nssl0d = Fp
i=0

`

aslidGnsla
!d, s64d

wherens is the steady-state density andnsla
!d is the density

at the attractive fixed pointla
!=`. Next, define Gnsld

;pi=0
n aslid. From Eqs.(58) and (63), we can write

aslkd =
1

2

d ln lk+1

d ln lk
s65d

as in the FA model. Hence

Gnsld =
l0

l0 + 1
f1 + Osln+1

−1 dg. s66d

Taking n→` gives ln+1→`, and by noting thatnsla
!d=1,

we obtain the steady-state density

nssl0d =
l0

l0 + 1
= c, s67d

as expected.
The behavior of the density near criticalitysl!=0d fol-

lows from the relationnsDld=asl!dnsl8d, where Dl;l
−l!=l. If we iterate the RG until the renormalized coupling
l8=Os1d, i.e., , /,0,eln 2/l0, we find nsl0d,e−ln 2/l0. Thus
the density vanishes close to the critical point faster than any
power ofT.

VII. RENORMALIZATION OF THE BCIC

In this section, we will apply the RG scheme to the BCIC,
a model whose kinetic constraint interpolates between that of
the East and FA models. We find that on suitably large length
and time scales(or for suitably low temperatures), the BCIC
behaves like the FA model. This agrees with existing numeri-
cal and analytical results[20].

The ground-state eigenvectors of the BCIC(10) are the
same as those of the FA model. If we use Eqs.(10) and(24),
we find

sHbd8 =
1

2 − c1
1

2 − c
− c − b̃c − bc 0

b̃

c − 2
+ b̃c b̃c 0 0

b

sc − 2d
+ bc 0 bc 0

0 0 0 0

2 . s68d

Equations(10) and(68) yield the same recursion relation for
the temperature parameterl as in the FA model,lk+1=lks2
+lkd. They also yield a recursion relation for the asymmetry
parameterb: bk+1=bk. Thus the asymmetryb is a marginal
operator, and does not flow under renormalization. From the
RG relation forl, we see that for anybP s0,1d the interpo-
lation model falls in the universality class of the FA model,
rather than the East model.

However, we expect the interpolation model for small val-
ues of b to display a crossover from East-like to FA-like
behavior [20]. This suggests that by projectingHb onto a
subspace spanned by only the ground states of Eq.(10), we
have omitted this crossover behavior. We can recover it in
the following way.

First, we note that the difference between the East and FA
models manifests itself in the treatment of the statesu↑ ↓ l
and u↓ ↑ l during embedding. In the East model, the latter is
completely suppressed[see Eq.(40)]; in the FA model, both
are treated on equal footing[Eq. (24)]. By restricting our RG
scheme to a subspace of the ground states of Eq.(10), we are
unable to construct an embedding operator that treatsu↓ ↑ l
and u↑ ↓ l asymmetrically[cf. R2, Eq. (40)].

To remedy this, we now include the first excited right
eigenvector of Eq.(10) in our embedding operator. We will
call this eigenvectore. This is akin to calculating higher-
order “loop” diagrams to check ifb, ostensibly a marginal
operator, is relevant at second order.e has eigenvalue 2s1
−bdbc+Osc2d, and is therefore a “gapless excitation” in the
East model limit,b→0. Note thate=se1,e2,1 ,0dT, where the
ei are functions ofc and b. For smallc, we havee<fs2b
−1dc,−1+s1−2bdc,1 ,0g.

Let us now construct a new embedding operator,

R̃2 =
1

2 − c1
c + ae1 0

1 − c + ae2 0

1 − c + a 0

0 2 − c
2 , s69d

and demand that in the limitsb→0 andb→ 1
2 we recover the

respective embedding operators for the East and FA models,
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namelyR2 and T2. This is achieved by settinga=−s1−2bd
3s1−cd. We note thatR1R̃2=1.

Our renormalization prescription is nowsHbd8=R1HbR̃2.
We derive recursion relations for the parametersc andb in a
similar way to before: we define the unrenormalized tem-
perature parameterl as the ratio

l ; −
s1,2d + s1,3d

s1,1d
=

c

1 − c
, s70d

wheresi , jd is elementsi , jd of the matrixHb;L, Eq. (10).
We define the renormalized parameterl8 by the ratio of the
corresponding elements of the renormalized matrixsHbd8.
This gives us the recursion relationlk+1= fslk,mkd. The pa-
rameterm is the scaled asymmetry parameter, whose un-
renormalized value we define as

m ;
s1,3d
s1,2d

=
b

1 − b
. s71d

The elementssi , jd again refer to Eq.(10). We write the re-
cursion relation form, obtained from the elements ofsHbd8,
asmk+1=gslk,mkd.

The behavior of the functionsf andg thus determine the
crossover properties of our model. We find thatl has an
unstable zero-temperature fixed pointl!=0, and an attractive
high-temperature fixed pointl!→`. The asymmetrym has
an unstable maximal-asymmetry fixed pointm!=0, corre-
sponding to the East model, and an attractive symmetric
fixed pointm!=1, corresponding to the FA model. Thus any
BCIC with less than maximal asymmetry will behave at long
length and time scales like the FA model. Figure 5 shows the
qualitative RG flow of the BCIC.

For the case ofp=2, we find that

lk+1 = Hlks1 + lkd + f1slkdmk + Osmk
2d, mk < 0,

lks2 + lkd + f2slkdm̃k
2 + Osm̃k

3d, mk < 1,
J

s72d

where f1sxd;s2+9x+11x2+6x3+x4ds2+3x+x2d−1, f2sxd
;x2sx−1ds2+xd / f8s1+xdg, and m̃k;1−mk. Equations(72)
thus reproduce the recursion relations forl in the East model
and FA model limits[Eqs. (27) and (43), respectively]. The
asymmetry parameterm is a relevant perturbation, whose
flow is governed by

mk+1 =5S1 +
1

lk
Dmk − f3slkdmk

2 + Osmk
3d, mk < 0,

1 −
lk

1 + lk
m̃k + Osm̃k

2d, mk < 1,6
s73d

where f3sxd;s2+4x+5x2+3x3d / fx2s1+xds2+xdg.
We can deduce the flow of the BCIC away from maximal

asymmetry,m=0, by studying Eqs.(72) and (73) in the re-
gime m!l!1. Writing bl;l8−l<,dl /d, and a similar
relation form, we obtain

bl = ,l2 + m + Oslmd + Osm2/ld, s74d

bm =
m

l
−

m2

l2 + Osm3/l3d + Osm2/ld. s75d

Equations(74) and(75) may be solved in terms of the expo-
nential integral function Eisl−1d, although the physical inter-
pretation of this solution is not obvious. We can more clearly
determine the essence of the crossover as follows.

The temperature parameterl has RG eigenvalue 0(East
model) or 1 (FA model). It therefore grows much less rapidly
than the asymmetry parameterm, which has(initial) eigen-
value l0

−1@1. Hence from Eq.(73) we have m8=2ymm
<l0

−1m, giving the RG eigenvalue for the asymmetry param-
eter asym<sT ln 2d−1. Let us now write a standard RG scal-
ing form for the particle density,

nRsl8,m8d = pnspyll,pymm,p−1j,p−ztd. s76d

To derive a crossover temperature, we iterate the RG until
pyl=Os1d. The m-dependent scaling combination is then
l−ym/yl. When this becomes large, i.e.,Os1d, one would ex-
pect the BCIC to behave like the FA model. Taking for sim-
plicity yl=1, we find a crossover temperatureTxO
,s−ln md−1/2. This scaling agrees with that obtained by
equating the relaxation time scale for them-suppressed sym-
metric process,tS,smld−1, with that for the asymmetric
process,tA,exps1/T2 ln 2d [11,20].

We can extract crossover time and length scales from Eq.
(76) by iterating the RG until, respectively,p−1j=Os1d and
p−zt=Os1d. These givejxO,m−T ln 2 and txO,m−2T ln 2.

The real-space RG therefore confirms that for anything
less than maximal asymmetry, the BCIC will on long length
and time scales display FA-like, as opposed to East-like be-
havior [20].

FIG. 5. RG flow diagram for the BCIC, insl ,md space.m=0 (1)
corresponds to East(FA) model behavior. The critical fixed point
(0,0) is unstable; the attractive fixed points` ,1d corresponds to the
high-temperature fixed point of the FA model.
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VIII. CONCLUSIONS

We have used the simple real-space RG scheme of Refs.
[14,21] to derive the zero-temperature critical behavior of the
FA, East, and BCIC models. Our findings agree with known
results [7,9,11,13,20], but offer a different and unified ap-
proach to these systems. We are also aware of alternative
real-space RG studies of KCICs[25,26].

The real-space RG scheme used in this paper is suffi-
ciently flexible to be extended to more complicated models.
An interesting possibility would be to use this scheme to
study a recently introduced model of the reentrant glass tran-

sition in colloids [27], which combines dynamical con-
straints with static interactions.
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