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Facilitated spin models in one dimension: A real-space renormalization group study
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We use a real-space renormalization gr¢RSRG to study the low-temperature dynamics of kinetically
constrained Ising chaingCICs). We consider the cases of the Fredrickson-Ande(§én model, the East
model, and the partially asymmetric KCIC. We show that the RSRG allows one to obtain in a unified manner
the dynamical properties of these models near their zero-temperature critical points. These properties include
the dynamic exponent, the growth of dynamical length scales, and the behavior of the excitation density near
criticality. For the partially asymmetric chain, the RG predicts a crossover, on sufficiently large length and time
scales, from East-like to FA-like behavior. Our results agree with the known results for KCICs obtained by
other methods.
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I. INTRODUCTION tonian H=3%,0;. We will take N even, assume periodic

Kinetically constrained model&CMs) [1—4] are systems b_oundary conditions, and restrict the dynam.ics to flips of
in which certain trajectories between configurations are supsingle spins that have at least one nearest neighbor in the up
pressed[5]. As a result, they display interesting slow dy- state. The transition rates depend on whether the facilitating
namical behaviof6—10. Simple KCMs, like the facilitated up-spinT lies to the left or the right of the flipping spin:
kinetic Ising model introduced by Fredrickson and Andersen - -

[1] (hereafter the FA modgland Jéckle and EisinggB] b(1-c) be b(1-c) be

(hereafter the East modeHisplay the slow, cooperative re- =1L 10-=1111 = 1L 1111, (1)
laxation characteristic of supercooled liquids near the glass ~ B P
transition[11,12. For a general review of KCMs, s¢&3].  Wherebe[0,1], b=1-b, andc=(1+e'M)™*~e™T at low

In this paper, we show that a simple real-space renormakemperature. The bias determines the symmetry properties
ization group (RSRG scheme[14] yields the dynamical of the kinetic constraint: the FA and East models correspond
properties of facilitated spin modeis in one dimension, orto the limiting cases of symmetfyp=3) and maximal asym-
kinetically constrained Ising chairi&CICs), near their zero- metry (b=0), respectively. The East model is so called be-
temperature critical poirftL5]. This behavior is known from cause information propagates to the east. We will also con-
previous work[13]. The RSRG scheme provides a unified sider the case of general which we will call the biased
framework for treating these systems, allowing one to obtairconstrained Ising chaitBCIC). For b small but finite, the
critical dynamic exponents and to visualize the RG flows ofBCIC exhibits a crossover at large length and time scales
scaling variables related to temperature and spatial asymmé&om East-like to FA-like behaviof20]. In Sec. IV, we use
try. an RSRG to quantify this crossover.

We proceed as follows. In Sec. Il, we define KCICs, and The dynamics of the KCIC is governed by the master
show, following Siggig19], that they can be written in terms equation
of “interacting quantum spins.” We discuss in Sec. Il how
this formalism_ admits a simple physical interpretation in AxCAY == > W(oy)P(a,t) + 2 W= o)P(a’ 1), (2)
terms of reaction-diffusion processes. In Secs. IV-VII, we at i i
use a RSRG scheme to extract the zero-temperature critical
behavior of KCICs, in the FA modéBec. \j and East model WhereP(a,t) is the probability that the system has configu-
(Sec. V) limits, and for the case of finite asymmetf§0]  ration o={07y,...,0,...,0\} at timet (¢’ is the configura-
(Sec. VII). We find that the dynamical exponents for the FAtion o with spin o; flipped), and w(a;) =w(o;,{0}}) is the
and East models are, respectively,2 andz=(TIn 2)™, in probability per unit time that; will flip. The {o;} are the
agreement with existing resulfd3]. We show that length nearest neighbors of The matrix controlling the time devel-
scales in the FA model grow @s- e!'™ near the critical point  opment of the B-component vectoP is not in general Her-
T=0, while for the East model there is no characteristicmitian, but can be made so by introducing the vector
length scale. We also quantify the crossover of the KCICy(o,t)= Py(0)Y?P(a,t). Here Py(o) is the equilibrium dis-
with large but finite asymmetry from East-like to FA-like tribution. However, this obscures the fact that the evolution
behavior. In Sec. VIII, we state our conclusions. operator is a normalized stochastic process which obeys de-

tailed balance, and so we will use the non-Hermitian repre-
Il. KCIC: A PSEUDOSPIN FORMULATION sentation where this is explicit.

The KCIC is defined as followfl,3]. Consider a chain of One passes to a quantum formaligh®] by introducing

N Ising spinso;=*1, in one space dimension, with Hamil- the state vector
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IP(1)) = S p(o? Dod) @ 0D ® -+ ®|d). (3) The East and FA models correspond to the cdse8 and
(o7 b=2, respectively,

The ket|a?) is the state vector for the spin at sitéThe spins
are for convenience taken to lie along thaxis, and thus the

operator o flips the z component of spini:oXf(o?) l-c -c 00
=f(-o?) o). By differentiating Eq.(3) with respect to time, Le=ne (= c-1 ¢ 00 (11)
and using Eq(2) to eliminate P(c,t), we get the master 0 0 00
equation in the guise of a Euclidean Schrodinger equation, 0 0 0O
J
—|P(V) =-H[P(1)). (4)
at and
Here H, which we will also call a “Hamiltonian,” is not in
general Hermitian.
We define the KCIC by the constrained Glauber rates 2-2¢ -c -c O
2 . 1( Be+ean) 1l c-1 ¢ 0 ©
_ =—(n ny=—-
w(oi,{oj}) —Ci({o'j})m: (5 FAT 2 2l c-1 0 ¢ o
. . . 0 0O 0 O
where the factor of 2 cogj3/2) is a convenient normaliza- (12
tion. The constraint i€;({o}}) =bn;_,+bn.,, wheren;=3(1
+07). The sigma matrices at a given sit@bey /o= 5*¢ In the next section, we show briefly that the evolution
+ieX%o7. Sigma matrices at different sites commute. The maOperators obtained above have a simple physical interpreta-
trix 7+ in Eqg. (4) then reads tion as reaction-diffusion processes.

z 5o

H =N, Ci({o})(eP72 - e7Pil2gY), (6)
i I1l. INTERPRETATION VIA REACTION-DIFFUSION

where NV"1=2 cosl{8/2). Using the Pauli representation PROCESSES

=9 ) ando?=(5 9), we have _ _ S
The interpretation of the KCIC as a reaction-diffusion

_1 1407 = 10 7 process follows by noting that the Liouville operators in the
M = 2( )= 00 (7) previous section act on two-site basis states,
and
. QBoli2 _ e—ﬁoizlzogi( ) (1 —c - C) © P(1,12)
' 2coshg2z \c-1 c/° P(t) = (P(l)) ® (P(l)) _| PO (13
- : - P(0) P(0) P(0,1) |’
The Hamiltonian can then be written as the matrix direct
product, P(0,0)
N-1 N-1
H=(1 —b); 19 - en,96ele - a1l +b2 1 whereP(1) is the probability that a spin is up. We have again
=t = suppressed time labels. The single-site basis states are nor-
N1 malized probabilities of the forrﬁz(l’lp), wherep<1. The
®-@faenele - el= Z L, (9 vectors(}) and(?) are the eigenvectors of with eigenvalue
=1 +1 and -1, respectively.
where the Liouwvillianf;=1® - @ L®---®1 is We represent reaction-diffusion processes as follows. Let

the eigenvaluer/=1 represent a lattice siieoccupied by a
0 particleA, ando?=-1 represent the same lattice site with no
B(c— 1) Be 0 particle present. We denote this state By Then the East
L=1-bnef+bl®@n= . model Liouvillian (11) has a clear physical interpretation: it
bc-1) 0 bc O describes theright) branching process+® — A+A occur-
0 0 0O O ring with ratec, and the(right) coagulation process\+A
(10) — A+ occurring with rate 1€. The FA model involves in
addition the(left) branching and coagulation processks
The matrix(10) describes a probability-conserving stochastictA— @+A and @ +A— A+A.
process, thus the sum of each column is zero. When we Consider the following general set of reaction-diffusion
construct the RG scheme, we must preserve this conditiomrocesses:

1-c -bc -bc
0
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Process Description Rate Ho=(N® ) ® (1® 1) (16)
right diffusion A+ —D+A Dr and
right coagulation A+A—A+QD Yer o he brackets ind ] _  nins it block
: where the brackets indicate the grouping of spins into blocks.
Ief_t coagu_lau_on ATA—D+A YeL Al terms in the Liouvillian(9) are of the form(16) or (17),
pair annihilation A+A—D+D YA with the necessary number of identity matrices affixed at
right death D+A—-D+D ) each end of the chain.
left death A+D—D+D B We will denote the eigenstates 6f,.,, as|n) and (n|,
right branching A+Q —A+A PR noting that the left and right eigenstates of a non-Hermitian
left branching B+A— A+A oL matrix are in .general_ different. The East and FA models
_ ) have, respectively, triply and doubly degenerate ground
paur cre_atlon D+D—A+A v states, i.e., respectively, three and two eigenvectors with ei-
right birth D+D—D+A o genvalue zero. One identifies these ground states as effective
left birth D+D—A+D o cell states, and projects the basis of two-site sgims

e{TT. 101 1)1 1)} into renormalized block spins

By inspection, using Eq13), the equation of motion for this |o’) e {|+),|-)}. This is done by defining a projection
system reads operator
ThRoTA TV Ty(0',0) = 2 Cor )1, (18)
. — Y D -D -0 n,n’
Po=-[ T F [Py, (14

where|n’) is a linear combination of the renormalized basis
vectors|o’), and thec, ., are real numbers. If the original
Hamiltonian™ is 2\-dimensional, theiT; is a 2V2x 2N ma-
trix whose rows contain linear combinations of the left
ground states of{,. One can therefore write the matrix rep-

resentation ofl; as

~ Ycu _DR BL - o
_'}’A _6 _5 2

where I'= ycr* yeLt Ya, BRE Dr*pr* 9, BLE D +pL+6,
andX =2o0+v.

IV. REAL-SPACE RENORMALIZATION GROUP IN 1+1

DIMENSIONS . (Cm>,+> Cirinfe Ol Cu>,+>)®N/2 19
We will now apply a simple real-space RG scheme to the S \Gme S S S ’

KCIC. This ;cheme was developed ir_] the 19803. and used MWhere ¢ ., is the projection of the two-spin stafé 1)

% 2001 A5 1 oo e enormalz cl e, et. The e op-

approaches that h’ave been used on reaction;diffusion S gration is 8 mapping from a Hilbert space Mfspins, with
ppro X : . Ygimension 2, to a Hilbert space oN/2 block spins, with

tems include density matrix REOMRG) [16] and field- ) ) - SN N2 .

theoretic RG techniques. DMRG is a numerical schemélimension 22 ThusT;: (N CV2. We also define the em-

which tends to produce more precise estimates for criticaPedding operator

exponents than does the RSRG, but is less intuitive, in the ~ , ,

sense that it does not lend itself so readily to the visualization To(o,0") = E Co nl{'], (20

of flows in RG space. Field theoretic RG techniques have mn

been successfully applied to many reaction-diffusion systemghich may be cast as d'X 2V matrix whose columns are

in low dimensiongd17,18. However, we argued in Refl5]  linear combinations of the right ground states 7df. We

that the FA model has an upper critical dimension of 4, andhave

crucially, its coarse-grained action becomes difficult to ana-

lyze belowd=2. Hence we shall employ a real-space RG G S Nz

scheme ird=1, which provides both an intuitive and a trac- Chapftly Cloin

table means of studying the critical behavior of the KCIC. T,= ' ' , (21)
The idea is as follows. One divides the lattice into blocks Cryliny Cum

of p spins, and denotes the configuration of spins inside each i1l Cmnil)

block « as{a;},. We will focus on the casp=2, and discuss
larger blockings where appropriate. The evolution operatokvhere nowc,, ;1 is the component of the renormalized cell
Hp then splits into an intrablock paf, and an interblock ~ State|+) that is embedded in the two-spin statef ). Thus
“interaction” V: T,:CN2—CN, We demand that if we apply the embedding
operator followed by the projection operator, we recover the
H=2 (Hoia* Vaard)- (15) identity on the N/2-dimensional block-spin spacél;T,
“ =1,/,- But since the projection operation does not retain all
In the case of the East model, we can write the degrees of freedom of the system, projection followed by
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embedding does not yield the identity on real-spin space. o IIII —) ) ) ) —

ThusT,T; # 1. o= B
. L . =- oo c=0 c=1
The renormalization prescription is then
H' (') = Ty(0" ) H() Tolor, ), 22 FIG. 1. FA model RG flow diagram for the temperature param-

eter c=(1+e")™L, The zero-temperature and high-temperature
where H' is a renormalized evolution operator. This pre- fixed points,c*=0(\"=0) and(c*=1)(A;=), are, respectively, un-
scription projects the original™< 2N Hamiltonian onto a Stable and stable. The fixed poiot=—<(A"=-1) is unphysical,
22 N2 gybspace. If this subspace is suitably chosen, th@nd inaccessible.

renormalized Hamiltoniaf’ will have the same form a&,

but with renormalized couplings’ =f(\) and rated™’=p?".  projection and embedding operations, as befits a model
From these relations, one can determine fixed points anwhose dynamical rules are isotropic. We will see in the next

critical exponents. section that this is not so for the East model.
We will now apply this scheme to the KCICs. Using Egs.(12) and(24), we find
(1-0?
V. RENORMALIZATION OF THE FA MODEL 2? -c -c O
The FA model is defined by E@12). When the blocking (1-c)?
parameteip=2, we need only consider the ¥6L6 matrix EAL, - c 0 O
(H™)' = 22 2-c . (25
HA=ne)elel)+(1ene e l) @=9) 1o .
+lenNele)+(1lel)e(hel). (23 2-c
The brackets indicate the groupings of cells into blocks. The 0 0 00

first and third terms in Eq23) comprise the intracell Hamil-
tonianH,; the second and fourth terms are the intercell in-We can deduce the flow of the temperature parameter as
teractionV, ,.1. follows. Let the ratio of the sum of the rates of the processes
We must calculate the left and right ground states of theA® — AA and @A— AA to the sum of the rates ofA
matrix Hy (12). There are two left ground-state eigenvectors,— @A and AA— AP be \. Thus its unrenormalized or
(0,0,0,2 and(1,1,1,0, and two right ground-state eigenvec- “bare” value is
tors,(0,0,0,9" and(c/(1-c),1,1,0". We will use these to
build T, andT,, subject to the following constraints. (1.2 +(1,3 c
(i) The RG transformation must preserve probability con- o=-— == =e 1T
servation. Thus each column ()’ must add up to zero. (1,9 1-c
(i) We require thav/,, .., have the same form &g, so
that we can identify unambiguously the renormalized paramwhere (i, j) is element(i,j) of matrix (12). Hencex —0 as
eters. Note that by building, from the ground states 6fo, T, 0. We can work out how renormalizes by calculating a
we ensure that the renormalized intracell Hamiltonian vansimilar ratio using the matrix25). The resulting RG recur-
ishes, i.e.;H,=0. sion relation is
(iii) We must respect the fact that the FA modetrisi-
ally irreducible for all T+# 0 [13]. This means that any con-
figuration(bar that with all spins dowrcan be reached from N =N2+N), (27)
an initial high-temperature configuration. This suggests that

any two-spin state with at least one up-spin, namelywhere)’ is the renormalized counterpart of Equation(27)

(26)

[T1),111) and|| 1), should be projected onia-). describes the flow of\ away from an unstable zero-
. o : _(r o temperature critical poin\*=0, towards a stable high-
(iv) Normalization. We require thal; T,= 0 ' temperature fixed point*—<. The unphysical fixed point
One choice satisfying these criteria is N =-1 is inaccessible. Figure 1 shows this flow.

The RG procedure for the FA model using larger block
¢ 0 sizes is unambiguous, because one obtains at each stage only
T = 1110 T _ 1 |1-c 24 two right and two left ground-state eigenvectors of the in-
"looo 1 % 2-cl1-¢ o | (24) trablock Hamiltonian. Thus fop=3 we construct the follow-
0 2-c ing projection and embedding operators:
The matrixT, projects|T 1), |1 1), and|| ) onto|+), and 1111111
[l |) onto|-). T, embeds the statg+) as (2—-c)™Y{c|1 1) T = (0 000000 i)) (28)

+(1-0)|7 |)+(1-0)|| 1)}, and|-) as|| | ). The form of the
ground-state vectors for the FA model stipulates that the
states 7 |) and|] 1) are treated on equal footing during the and
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a a’=pa

—

N
v

- —

FIG. 2. An illustration of how length scales change under the
RG blocking procedure. Say the system admits a dimensionful cor-
relation lengthéy. Then in the unrenormalized systeteft pane) FIG. 3. Equilibrium space-time trajectories B+ 1.0 for the(1
we may construct its dimensionless counterpart, measured in termsl)-dimensional FAleft) and Eastright) models, reproduced from
of the lattice spacing: é=&p/a. In the renormalized systenight ~ [11]. Up-spins are black, down spins white. Space runs along the
pane), the new lattice parameter & =pa. Thus the renormalized Vertical direction, encompassing 18pins. Time runs along the
dimensionless correlation length §6=é&p/a’ =p~&. horizontal. The characteristic length scales of both systems corre-
spond to the vertical extent of the “bubbles” of down-spins, which
scale in equilibrium aseq~ ¢l The horizontal extents, of the

\? 0 bubbles is determined by the relation-1% where the dynamical
A 0 exponents for the FA and East models are?2 andze1/T, respec-
\ 0 tively. As one observes the trajectories shown above on smaller
length and shorter time scales, one moves from right to left along
) =NV 1 0 (29) the RG flow diagrams shown in Figs. 1 and 4. Hence one eventually
2 N 0 ’ probes behavior controlled by the critical fixed point. For the East
1 0 model, the disappearance of the characteristic length is consistent
1 0 with the emergence of the fractal structure of the bubble boundaries.
0 NN

) ~ = =T (32)

where V(\)=(3+3\+A)7L In T<23), one inserts in the rel- 0

evant slot one power of for every up-spin in excess of one, ) ) o
in order to reflect the thermal suppression of these states. TNIS cOrTelation length corresponds to the characteristic
Thus the staté] 1 1) [corresponding to elemefit, 1) of Eq. sp{mal extent of structurgsbubbles” in space-time trajec-
(29)] is penalized by a factox?, whereas the statg 7 1) tories of th_e FA model at low temperature. We show one such
[corresponding to eleme,1) of Eq. (29)] receives a pen- rajectory in Fig. 3. _ . .

alty of one power of. The generalization to larger block Ve can obtain the dynamical exponertiy noting that in
sizes is straightforward. We find that for general block gize the limit of zero temperature the nonvanishing elements of

the RG recursion relation is Eq. (25) are one-quarter those of _eq2). We__find th_at for
generalp the corresponding rescaling factorgs’. We inter-
M= (L+N )P 1, (30) pret this factor as a rescaling of time under renormalization,

defining the dynamical exponentvia t’ =p™. Thus for the

; _ FA modelz=2, signifying diffusive behavior. This is as ex-
RG. As expectedand required by the semigroup property of hecieq: the low-temperature dynamics of the FA model is

the renormalization groypwe see from Eqs27) and(30)  known to proceed by diffusion of isolated defeis).

that two successive coarse grainings using a block size of \ve can infer the consequent relaxation time of the FA

p=2 are equivalent to one coarse graining using a block sizgygdel by using the relationship between time and length

of p=4. Thus\’=p\+O(\%) near the critical poinh*=0. scalest~ % wherel is the length scale being probed. Since
The divergence of the dynamical correlation length fol-the equilibrium length in the FA model scales as

lows from standard RG argumernitd2,23. Because the di- loq~ ¢ 2—see below, and Ref§11,13 and since the micro-

mensionful correlation length must remain invariant Underscopic time scale goes aswe expect the equilibration time

the RG transformation, the dimensionless correlation length, have the leading-order temperature dependeorsg

& measured in terms of the lattice spacin%, must decrease by -2 Teq~ €XP(3/T). This scaling is known from previous

a factor of_the blockmg parametes; &' =p~-¢ (see Fig.- 2 \work on the FA mode[13).

We can write this relation as One may also calculafd 4] the density of excitated sites,
E0N) = p 0. (31) n=_%(1 +0), both in_the _st_eady state and near th_e crit_ical fixed

point. The former is trivial for the FA model, since it obeys

In Eqg. (31), N’ is the renormalized version of. If we can  detailed balance, and one may therefore consider the calcu-

write the RG equation fok near criticality in the form\’ lation of the steady-state density a test of the RG scheme.

=pYA+0(\?), then the correlation length is a function satis-  First note that the renormalization of the number operator

fying &pPYN)=p t&(N). Hence&(N)<\""L, wherev, =11y. does not depend on whetheisits in the left or right slot of

From Eq.(30), we see that, =1, and hence near the critical the block:(1®n)'=(n® 1)’ =(2-c)"*n,, for a block sizep

point =2. The RG recursion relation for the density then reads

where\, is the value of\ following the kth iteration of the
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1+N\, call R; andR, so as not to confuse them with their FA model
N = 2 N1, 33 counterparts. One choice satisfying critefig—(iv) (see
k above is
where the subscrigkt denotes the parameter obtained follow-
ing k iterations of the RG. ac 0
To extract the steady-state density, we foll¢d4] and 1110 a(l-c) 0
write n(\,) =a(\)N(A\ys1), Wherea(x)=(1+x)/(2+x). By it- R1:< ) b = , (40)
erating this equation along the RG flow, we get 0001 1;"’1 0
1
Ns(\o) = [11 a(ki)]n()\;), (34 where 0O<a<1 parametrizes a degree of freedom. This
1=

arises because the East model admits one more ground-state
whereny is the steady-state density anéh?) is the density ~vector than the FA modeR, projects|1 1), [T |), and|| T)
at the attractive fixed point’=co. Again following [14], we ~ ONto [+), and|[] |) onto |-). R, embeds the statpt) as
define Gy(\) =IT"qa(\;). From Eqs.(27) and(33), and the adT 1)+a(l-c)[T |)+(1-a)[| 1), and [-) as || |). With

definition ofa(\), we can write this choice, we get
1din Ny, 0?2 -
a\) = = kel (35) a(l-c ) c 00O
2 din ) £ -a(l-c)* ¢ 0O
, (H7)'=(1+ac-a) (41)
We can therefore writ&,(\) as 0 0 0O
1 dinhn, 0 0 00
G = o (36) o
2" dlIn A We deduce the flow of the temperature parameter in a similar

ol . . way to before: let the ratio of the rates of the processes
From Eq.(27), we have thah,,;=(1+\g)* —1. Using this AD — AA and AA— AZ be \. Then
result with Eqs(34) and(36), we get

(1,2 c

1 * =7 _aur
)\n+1)n()\a). 37 ho L) 1-c © (42

. Ao (
N<(\g) = lim 1+
S( 0) nﬂw)\o‘i' 1

As n—o, \p,1—, and so, noting that(\})=1, we obtain  where(i, ) is element(i,j) of matrix (11). Hence the bare

the steady-state density temperature parameter has the same interpretation as in the
FA model. We can work out how renormalizes by calcu-
BE Ao =c. (39) lating the ratio of elementgl,2) and (1,1) of matrix (41).
Not+1 The resulting RG recursion relation is

This is as expected: detailed balance with respect to the

Hamiltonian ~ H(0)=3%0;  implies  (M)eg=Z(m(1

+07)/2]e P93 e P9 =c, implying an unstable zero-temperature critical poixt=0,
Near criticality, we can writen(\)=p™'n(p\), and so as expected.

N(\g) ~N\g. Thus the density vanishes close to criticality as The dynamical exponerz follows immediately. In the

n~c? with g=1. critical limit A —0, element(1,1) of matrix (11) becomes

unity. Hence we may interpret the renormalized value of this

element as the time rescaling factor.2=rom Eq.(41), we

get

N =aIA(1+)N), (43)

VI. RENORMALIZATION OF THE EAST MODEL

The East model is defined by E@.1). To renormalize it L
using a blocking parametgr=2, for example, we need only 2= Im’(n){l +a(c-Dla, (44)
consider the 1& 16 matrix -

HE=(neH)e(1lol)+(1en e (@sl). (39 and soz depends on the value we choose #or
Let us choose. This parameter measures the extent to

The brackets indicate the groupings of cells into blocks. Thavhich we treat the stateés 1) and|1 | ) on equal footing. In
first term in Eq.(39) is the intracell componerftly; the sec- a model with symmetric dynamical rules, such as the FA
ond is the intercell interactiol,, ,.;. model, we must treat these states identically. But the East

We must calculate the left and right ground states of thenodel has asymmetric dynamical rules, suggesting that at
matrix H, (11). The left ground states are represented by theome point in our calculation we must supprgis$) relative
row vectors (0,0,0,9, (0,0,1,0, and (1,1,0,0. The right to|7 |), or vice versa. At which point should we do this? We
ground states correspond to the column vectorsote that theprojectionmatrix R, treats| | ) and|| 1) iden-
(0,0,0,137, (0,0,1,07, and[c/(1-c),1,0,0". Next, we tically. If this were not the case, and we insteddr ex-
choose the projection and embedding matrices, which wample used
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00 11 (45 renormalization properties we wish to study.

Guided by the form oR?, we find that one choice dt,”
we would violate criterigii) and (iii ) above.(R] imposes a  Satisfying criteria(i)(iv) above is
symmetry between flipping spins— | in a two-spin block 3
and flipping the resulting renormalized spir) <« |-).)
Therefore, we conclude that trembeddingmnatrix T, must
treat|1 |) and || T) asymmetrically. The simplest way of
doing this is to seta=1, thus suppressing completely the
state| | T). This corresponds to the assertion that a spin con-
figuration|| T) (which is unable to change state unless con-
nected to neighboring spipgs much less important to the
dynamics than a configuratidn | ), which is mobile. Thus
when one renormalizes the lattice usiRg and R, with a
=1, one effectively discards dynamical pathways mediated RY = A1)
by blocks of “jammed” sping| 7). The RG process discards 2
inaccessible pathways in trajectory spa[oel,otz,...}, ac-
cording to rules imposed by the Liouvillian of the dynamical
process. Loosely, the projection mati identifies those
single-spin states which are facilitating, wher&apicks out
those two-spin states which afiaternally) mobile.
Settinga=1 immediately yields a temperature-dependent
dynamic exponent: from Eq44) we obtain 2*=c or z
=(TIn2)"1. Werea< 1, zwould be independent of tempera-
ture to leading order. We thus conclude that maximal spatial

/\/(4)()\)—1 -
anisotropy in the embedding process is a necessary condition 4 . 31
for a temperature-dependent dynamic exponent. where AV =(1+2x+2\?+)%". We see that Eq47) can be

The RG scheme for the East model can be generalized @Ptained from its FA model counterpart by using a simple
larger block sizes. However, this procedure is less straighttule-of-thumb: suppress all states of the forfn--) [corre-
forward than for the FA model, because of the freedom one i§Ponding to element&9,1)-(18,) of Eq. (47)], as well as
afforded by the East model's many ground-state eigenvecStates possessing a “frozen” up-spin at the nght;hand bound-
tors. Furthermore, the results one obtains depend on wheth@fy Of the block. Thus statés 1 | 1) [corresponding to ele-
one coarse-grains using a blocking parametequal to a Ment (3,1 of Eq. (47)] and |1 | | 1) [element(7,1)] have
power of 2 or not. been removed. We see again that the.em.beddlng operator

Let us first illustrate the generalization of the procedurePlays the role of a dynamical “filter,” eliminating those states
for the casep=4=22 We show that the results are consistentWhich play a subdominant role in the dynamics of the East
with the p=2 scheme. We then argue that one should obtaifmodel. . . o
a different dynamical exponent if one coarse-grains the sys- With these choices of embedding and projection opera-
tem using a block size not equal to a power of 2, and thertors, we obtain the RG recursion relation for the temperature,
show explicitly forp=3 that this is indeed the case. ro_ 2,13

Considerp=2", wheren is an integer. BuildingR" is Na =ML+ 2+ 207405, (48)
straightforward: it is identical td—g_p), its FA model counter- and a relation for the dynamica| exponent,
part. ThusR(l"') is a 2X 16 matrix whose top row is composed
of 1s apart from the rightmost element, which is zero. The 47 = lim N(L+)N)
opposite is true for the bottom row. r—0(1+N+2A??

The form of the embedding matrix is less obvious, be-
cause the number of ground states increases as one increakggiation(48) is identical to the result one would obtain via
the block size. However, we are guided by the form of thetwo coarse-grainings using a block sipe 2 [Eq. (43)], as
Liouvillian, which for block sizep=4 may be written sche- required. Equation49) yields the dynamical exponert

R’—(l 10 0) The third line comprises the intercell interaction whose
1 l

2

; (47)

O O OO OO OO o o o oo oo

oLo—oJol-o—oJo 'o—|=—|o ;—F,\%Jf

(49)

matically as =(TIn2)™%, as before.
We shall demonstrate how one can generalize this ap-
HE=ne¢®191)+(101en®)+(1en®{®1) proach to arbitrarily largen. Let us use reaction-diffusion

notation(1 — 1, | — 0), and write the projection and embed-

*lelelel)+(1elalen). (46) ding operators in the form
Brackets again denote the grouping of cells into blocks. We & _
take the first line of Eq(46) as the intracell Hamiltoniaf . Ri=|+ ><§ (1* |> +|-X00---0| (50

The second line vanishes under renormalization as a conse-
guence ofT; acting on it from the left, and so we ignore it. and
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R, = (E ag|1* >)<+ | +]00--- O)(~|. (51) 11(\), 1011\, 10001011\%),

1x

The symbol * denotes any staté- - -) startingwith a 1, and 1000000010001011%). (55

the{a,.} are a set of coefﬁmen[sge, €.g., the first column of All have a “mobile” rightmost up-spin. The thermal weight-

Eq. (47)]; the projection operatdR; allows one to compare jng of each state is given in brackets. These states are impor-
this notation to the matrix representations employed previtant because of the hierarchical dynamics of the East model
ously. The normalization requiremeriR;-R,=1 implies [7,13], which dictates that two defects separated by a dis-
>41,81,=1. Thus at least one of the coefficiemsnust be of tanced are relaxed by establishing a set of isolated defects
o(1). between them, at distance$2, 3d/4, etc. Thus for block
The values of these coefficients are fixed by the eigenvecsizep=4, the dominant dynamical pathway proceeds via the
tors of the intrablock evolution operator, as we have dis-state 1011, with a thermal weighting &f (and not, for ex-
cussed. We can see how these coefficients determine tl@mple, 1001, which has a weighting af. Hence ajp11
properties of the model under renormalization, as follows~\?, a;00;=0, and so lim_=1,181,1~\? Consequently,
We find that “bulk” states of the forne--1@A®f®1---) the rescaﬁ?g factor is 4~ A%, and the dynamical exponent
vanish under renormalization as a consequence of the proje€= (TN 2)™, as required(In the FA model, states such as

tion operator acting from the left. We are therefore left with |00(])°f]'> are perr&wi;[]ted, leading to tempere}ttére-inrc;?pegdent
the “surface” terms(i®1@-®1) and (1e--of), in  coefiicients and hence to a temperature-indeperafius

. N ~ Ro, which attempts to reconstitute an unrenormalized state
which the operators and ¢ sit at the edge of the block. We from a coarse-grained state, captures both energetic effects

find that, under renormalization, (the powers of\ weighting thermally the various stajesnd
- A R entropic effects(the “zero” entries corresponding to those
Ri-(1® - ®n)-R— (E al*l)n’ (52)  suppressed entropicallyWe conclude that the RG scheme
1x1

for the East model generalizes readily to larger block sizes.
It is interesting to note that if one uses blocks of size not
equal to a power of 2, one obtains a slightly different result
for the dynamical exponent. We argue that this is a conse-
quence of the hierarchical dynamics of the East model taking
place naturally in blocks of lengths equal to a power of 2
(53 [7,13. We can derive the approximate value othat one

In Egs.(52) and(53), primes denote renormalized o erators.ShOUId obtain from a coa_rse-gra_ining over block sizes
ds.(52) (3. p P # 2", Let us takegp=3 as an illustration. Consider the coarse-

The symbol &1 denotes statgld---1) startingand ending ,
with a 1. In Eq.(53), the temperature parameterhas been

rescaled by the coefficierd;y .o which weights thermally mine the leading-order temperature dependencg afoting

the statef10---0) with a single 1 at the leftmost edge, fol- yha ‘the rate for the equivalent unrenormalized process;
lowed by a string of 0s. From the previous discussion, we %

know that this coefficient is of order unity, and hence the|T 1)—|1 |), iS %=0(1). From our previous discussion of

recursion relation foik will be marginal, as we have found. the form of the embedding matrices, we can infer that the
The dynamical exponent follows by noting that the prod-dominant dynamical pathwaginvolving “unrenormalized”

uct of Egs.(52) and(53) constitutes the renormalized evolu- sping contributing to this renormalized process is

tion operator, and so the prefactor describes the rescaling % " .
time as a consequence of rescalin ace. Th LTI D=[1111] D). To rglax the sepond up-spin, one
! S sequ rescaiing sp us must create two extra up-spins to the right of the first up-

. . 2
“Z o fim(arn. ) X ay). 54 spin. Hence this pathway has a ratg~c?, and the renor-
p= Mo( 10-0) (1% ! 1) (54 malized ratey’ =0(c?). Other pathways also contribute to

and

él(%(g) 1® -+ ® 1) 'AR2—>(a10‘.0)%,|:)\—>
100

Y
grained relaxation procegs +)—|+-). We wish to deter-

Y
The constant of proportionality in Eq54) is (1-c)™*=1  the renormalized proce$s +)—|+-), but do so either with
+X, i.e., the reciprocal of elemeril,1) in the unrenormal- rates~c? (e.g.,|TTLT11)—|11 1] ])—in which case
ized East model Hamiltoniaril1). The first factor on the 7' is changed only by a temperature-independent numerical
right-hand side of Eq(54) is of order unity. The second factor—or with rates higher order in (e.g., the pathway
factor is fixed by the embedding operator, which is in turn|T 1171 1)—[1 111 ])). These we may ignore. Since we
determined by the relevant East model eigenvectors. Thiterpret the overall rescaling of the fundamental relaxation
rule-of-thumb we obtained above tells us that we removdate deriving from a coarse-graining of space as the numeri-
from this factor any state with a frozen rightmost up-spin.cal factorp™, we would therefore expect fqr=3 that 3*
This may be regarded as an entropic suppression of statesc? or z~2/(TIn 3).
playing only a subdominant role in the dynamics. Those Loosely, then, we expect that by coarse-graining space in
states starting and ending Wit 1 whichare important for ~ blocks of size 21'<p<2" one should obtainz
the dynamics of the East model are for block sipe®, 4,8, ~n/(TInp) [which tends toz—(TIn2)™* when p—c].
and 16, Coarse-graining using block sizes 2" yields z=(T In 2)™%.
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This is as we expect: the energetic barriers for relaxing — ) )b )b )b —

chains of lengths 21<p<2" and p=2" are identical, but c=0 c=1

the entropic barriers are larger for the latter case. Thus one _

would expect the dynamical exponents to differ. More so- FIG- 4. East model RG flow diagram for the temperature

phisticated argument§24] reveal thatz is bounded by paramterc=(1+e"T)™L. The zero-temperature critical fixed point
(TIn2)Land(2T In2)™L c*=0(A\*=0) is unstable. Near this fixed point, corresponding to

. . rvations of th m on small length and tim | he E
We can show that our guess for the dynamical exponent Igbse ations of the system on small length and time scales, the East

. _ model admits no characteristic length. This is consistent with the
borne out n the casp=3 by the_RG scheme. We construct fractal structure of space-time trajectories seen in numerical simu-
the embedding operator according to the

lations, such as those shown in Fig. 3. The dynamical expanisnt
A2 0 proportional to 17T, indicating a rapid slowing-down of the dynam-
ics near the critical point. As one observes the system on progres-

A sively larger length and time scales, one sees the emergence of a

0 0 characteristic length growing as the double exponential of recipro-

1 0 cal temperature. This length saturates rapidly, and is eventually sup-
R(23) =N\ , (56) planted as the characteristic length of the system by the equilibrium

0 0 domain size, whose properties are controlled by the high-

0 0 temperature stable fixed poiot=1 (\*=0).

0 0

0 NI see, sufficiently far from criticality, the emergence of a

length scale. Below, we show that E&9) indeed admits a
where V®=(1+X+\?) L. Together with the obvious choice growing length in such a regime. This corresponds to the

for the projection operator, we find eventual “blurring out” of the fractal boundaries of clusters
2 as one observes the system on progressively larger scales.
32= Iim)\—, (57) The emerging length scale corresponds to the spatial extent
\—0(L+\+2\?)? of bubble regions.

T _ - We can quantify the emergence of this length by consid-
yielding z=2/(T1n 3), as advertised. We conclude that the eIring an infinitesimal RG transformation. The blocking pa-

RG scheme for the East model can be generalized to large . . . .
block sizes, but more naturally so for the case of a blockin%aeq;ﬁézrgr:sa rllaet(t:i(ce:sesalg3¥ V?g égaegigetr);?g;io%iri dg]r?r?gl IS
Farametenr)] equal to a power of 2. For simplicity, we shall an infinitesimal chaﬁge of scale accordingptel+¢, where
ocus on the casp=2. " 5 '
S : . : €<1. By writing EN+€A°/In 2) = &N)+€dE(N)/df and N’
With a=1, the RG recursion relatio3) may be iterated —-\=<{d\/d¢, we obtain the flow equations for the tempera-

to give ture and correlation length,
Ap=No+N\G+O(\?), (58) NG
where), is the value of the temperature parameter following de N(@)FIn 2 (60)
a coarse-graining of the system by a fagier2". Since the
bare value ofy>0, we see that Eq58) describes a system and
with an unstable zero-temperature critical poirit0 and a de(0)
stable high-temperature fixed point —o. Now, however, a0 - —&(0). (61)

the temperature parameteris marginally relevant near the
fixed pointA*=0. The RG flow diagram is shown in Fig. 4. The initial data for Eqs(60) and (61) are A(£,)=\, and

To determine the correlation length in the East model, wex(¢) =&, respectively, where the subscript zero denotes an
proceed as follows. From the recursion relati&8), we see  ynrenormalized(physically meaningfyl quantity. The pa-

that the correlation length satisfies rameter{, acts as a short-distance regulafor ultraviolet
In p cutoff), and should be taken to zero at the end of the calcu-
& x+ EXZ =pHEx). (59)  lation.

One now iterates the RG by integrating E&O) until
For small values ok=X\, corresponding to low temperatures, M(€¢)=0(1), yielding € -€,~In 2/\o. From Eq.(61) we ob-
we have no solutiog(\) of Eq.(59) to first order in\. Thus  tain £(£)=¢&e %), and so the correlation length varies with
near criticality the East model possesses no characteristtemperature according to
length scale. This is consistent with the nature of the space- _ i
time trajectories seen in numerical simulations, such as that folho) ~ Xl In2)] ~ expe/in2).  (62)
shown in the right panel of Fig. 3. These display a fractalAway from the critical point\*=0, we therefore see an ex-
structure[11], and hence possess no characteristic length. tremely rapid growth of the dynamical length scale with tem-

On sufficiently large length and time scales, the systenperature.

will reach equilibrium, at which point the heights of bubbles  This length scale corresponds to the emergence of a char-
will be determined by the equilibrium spin distribution. This acteristic lengthé; away from criticality, and not to an equi-
doeshave a characteristic length. One therefore expects thbrium length scalel,, The latter may be defined as the
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reciprocal of the particle density in the steady si@&e be- VII. RENORMALIZATION OF THE BCIC

low), and scales as™. The dynamical length is a nonequi- |, this section, we will apply the RG scheme to the BCIC,
librium critical quantity, and will be cut off rapidly as one 5 model whose kinetic constraint interpolates between that of
probes larger length and time scales. Thus, in terms of thghe East and FA models. We find that on suitably large length
RG flow diagram, Fig. 4, the steady-state behavior is oband time scalegor for suitably low temperaturgsthe BCIC

tained near the attractive fixed poinf—o°, where one

behaves like the FA model. This agrees with existing numeri-

probes length and time scales much larger than those afal and analytical resultQ].

which critical fluctuations are manifest. The critical behavior

The ground-state eigenvectors of the BQUD) are the

will be observed on short length and time scales, near theame as those of the FA model. If we use EG§) and(24),

critical fixed pointA*=0.

The characteristic equilibration time follows from the re-

lation 7~1% wherel is a typical length scale. We hawe
=(TIn2)~. Taking the equilibrium domain length,~\"",
we find the equilibration time scalery,~ cZ~\n*

=exp{1/(T?In 2)}. This agrees with results obtained by other

means[13]. We assume that the dynamical exponergb-

tained near criticality holds in the region of the attractive

fixed point.
One may also calculatgl4] the density of particlesn

=%(1 +0). First note that the number operator renormalizes

differently depending on whether sits in the left or right
slot of the block:(n®1)’=n,, versus(1®n)’=cn,. Hence

we will define our density operator a$=%(n® 1+1®n).
The RG recursion relation for the density then reads

n —1<1+2)\k)n
k—2 1+)\k k+1-

To extract the steady-state density, we write EBB) as
N\ =a(\)N(\ys1), Wherea(x)=(1+2x)/[2(1+x)]. By iter-
ating this equation along the RG flow, we get

(63)

Ns(\o) = [H a(ki)] n(A3), (64)
i=0

whereng is the steady-state density anth\}) is the density

at the attractive fixed point;=. Next, define G,(\)

=II,a(\;). From Eqgs(58) and(63), we can write

1dlIn N1
N)=-——— 65
U T W (65
as in the FA model. Hence
G,(\) = Ao [1+0O0\1)] (66)
n Ao+ 1 n+l

Taking n— gives \,,;—, and by noting that(\})=1,
we obtain the steady-state density

A
0 =c,
Ao+ 1

Ng(\o) = (67)
as expected.

The behavior of the density near criticalitx*=0) fol-
lows from the relationn(AN)=a(A*)n(\’), where AA=\

-\ =\. If we iterate the RG until the renormalized coupling

N'=0(1), i.e., £1€y~€" Mo, we find n(\y) ~e™" 2P0, Thus

we find
1 -
——-¢c -bc —bc O
2-C ¢ be ¢
1| Pk B o0 o
(H*' =——| ¢c-2 (69)
2-C b
+b bc 0
(C—Z) C C
0 0 0 O

Equationg10) and(68) yield the same recursion relation for
the temperature parameteras in the FA model),1=\, (2
+\y). They also yield a recursion relation for the asymmetry
parametet: by,;=b,. Thus the asymmetrp is a marginal
operator, and does not flow under renormalization. From the
RG relation for\, we see that for anip € (0, 1) the interpo-
lation model falls in the universality class of the FA model,
rather than the East model.

However, we expect the interpolation model for small val-
ues ofb to display a crossover from East-like to FA-like
behavior[20]. This suggests that by projectirg® onto a
subspace spanned by only the ground states of Hl, we
have omitted this crossover behavior. We can recover it in
the following way.

First, we note that the difference between the East and FA
models manifests itself in the treatment of the stdtes)
and|| 1) during embedding. In the East model, the latter is
completely suppressddee Eq(40)]; in the FA model, both
are treated on equal footif&q. (24)]. By restricting our RG
scheme to a subspace of the ground states of X} we are
unable to construct an embedding operator that trgats
and|1 | ) asymmetrically[cf. R,, Eq. (40)].

To remedy this, we now include the first excited right
eigenvector of Eq(10) in our embedding operator. We will
call this eigenvectoe. This is akin to calculating higher-
order “loop” diagrams to check ib, ostensibly a marginal
operator, is relevant at second orderhas eigenvalue (2
-b)bc+0O(c?), and is therefore a “gapless excitation” in the
East model limitb— 0. Note thae=(e;,e,,1,07, where the
g are functions ofc andb. For smallc, we havee=[(2b
-1)c,-1+(1-2b)c,1,0].

Let us now construct a new embedding operator,

C+ae; 0

~ 1 [1l-ctae, O
=— , 69
2"2-¢c| 1-c+a 0 (69)

0 2-c

the density vanishes close to the critical point faster than angind demand that in the limits— 0 andbﬂé we recover the

power ofT.

respective embedding operators for the East and FA models,
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! {xkuw+fl<kak+ow§>, =0,
k+1 —

M2 N + N2+ O(d), =1,
(72

A where  f1(X)=(2+9x+11x°+6x3+x%) (2 +3x+x?) 71, f,(x)
=x2(x-1)(2+x)/[8(1+x)], and =1-pu. Equations(72)

u thus reproduce the recursion relationsXdn the East model
a and FA model limits[Eqgs.(27) and (43), respectively. The
asymmetry parameter is a relevant perturbation, whose
flow is governed by

_H
1
(1 + )\_>Mk — faupic+ O(), =0,
_ k
® } } ’ Mk+1 = Ne —
- + O ’ ~ 1!
N L+ (i) Mk
FIG. 5. RG flow diagram for the BCIC, if\, ) spaceu=0 (1) (73)

corresponds to EagFA) model behavior. The critical fixed point wheref(X) = (2 +4x+5x2+3x3) /[X2(1 +X) (2 +X)].

(0.0 is unstable; the attractive fixed poift, 1) corresponds tothe v can deduce the flow of the BCIC away from maximal

high-temperature fixed point of the FA model. asymmetry,u=0, by studying Eqs(72) and (73) in the re-
o ) ) gime u<<A<<1. Writing By,=\'-A=(¢d\/d¢ and a similar

namelyR, and T,. This is achieved by setting=-(1-2b)  relation for u, we obtain

X(1-c). We note thaR;R,=1.

Our renormalization prescription is no(#®)’ =R, H"R,.
We derive recursion relations for the parameteedb in a 5
similar way to before: we define the unrenormalized tem- B, = r_E O(13\3) + O(u2/N). (75)
perature parametexr as the ratio " A2

By = N2+ pw+ O(\pw) + O(p?IN), (74)

A
Equationg74) and(75) may be solved in terms of the expo-
nential integral function EA™1), although the physical inter-
pretation of this solution is not obvious. We can more clearly
determine the essence of the crossover as follows.

The temperature parameterhas RG eigenvalue (East
mode) or 1 (FA mode). It therefore grows much less rapidly
than the asymmetry parameter which has(initial) eigen-
value A\y'>1. Hence from Eq.(73) we have u'=2uyu
%)\al,u, giving the RG eigenvalue for the asymmetry param-
eter asy,~(TlIn 2)~L Let us now write a standard RG scal-
ing form for the particle density,

_(12+(13_ ¢
(1,) 1-c

A= , (70)

where(i,j) is element(i,j) of the matrixH,= L, Eq. (10).
We define the renormalized paramexérby the ratio of the
corresponding elements of the renormalized mat#s)’.
This gives us the recursion relatiop,;=f(\,, u). The pa-
rameter . is the scaled asymmetry parameter, whose un
renormalized value we define as

NN, 1) = pn(pPan, plew, p~tE, p ). (76)

To derive a crossover temperature, we iterate the RG until
p*»=0(1). The u-dependent scaling combination is then
The elementsi, j) again refer to Eq(10). We write the re- A\ ¥*. When this becomes large, i.©(1), one would ex-
cursion relation foru, obtained from the elements 6#®)’, pect the BCIC to behave like the FA model. Taking for sim-
as w1 =9\, s plicity y,=1, we finq a crossover temperatqrﬁxo
The behavior of the functionandg thus determine the ~(~In )™ This scaling agrees with that obtained by
crossover properties of our model. We find thahas an ~ €quating the relaxation time scale for thesuppressed sym-
unstable zero-temperature fixed poitE0, and an attractive Metric process,rs~ (u\)™, with that for the asymmetric
high-temperature fixed point* — . The asymmetry. has ~ Process,m~exp(1/T2In 2) [11,20.
an unstable maximal-asymmetry fixed pojat=0, corre- We can extract crossover time and length scales from Eq.
sponding to the East model, and an attractive symmetri€76) by iterating the RG until, respectivelp™£=0(1) and
fixed pointx*=1, corresponding to the FA model. Thus any p4=0(1). These give&o~x T2 andt,o~p 212,
BCIC with less than maximal asymmetry will behave atlong The real-space RG therefore confirms that for anything
length and time scales like the FA model. Figure 5 shows théess than maximal asymmetry, the BCIC will on long length
qualitative RG flow of the BCIC. and time scales display FA-like, as opposed to East-like be-
For the case op=2, we find that havior [20].

b
,U,=(——ﬁ). (71
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VIIl. CONCLUSIONS sition in colloids [27], which combines dynamical con-

We have used the simple real-space RG scheme of Refétraints with static interactions.
[14,27 to derive the zero-temperature critical behavior of the
FA, East, and BCIC models. Our fi.ndings agree VYiFh known ACKNOWLEDGMENTS
results[7,9,11,13,20 but offer a different and unified ap-
proach to these systems. We are also aware of alternative We are grateful to Hans Andersen, Robert Jack, and Robin
real-space RG studies of KCIQ25,24. Stinchcombe for discussions, and thank Peter Sollich for
The real-space RG scheme used in this paper is suffpoint out an error in an earlier version of this manuscript. We
ciently flexible to be extended to more complicated modelsacknowledge financial support from EPSRC Grants No. GR/
An interesting possibility would be to use this scheme toR83712/01 and No. GR/S54074/01, and University of Not-
study a recently introduced model of the reentrant glass trartingham Grant No. FEF 3024.
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